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Abstract

Active flow control using MEMS-based microactuators holds tremendous promise for
achieving laminar flow control and drag reduction for a wide class of aircraft. In order
to achieve effective control it is necessary to have a complete understanding of the
fundamental instability processes that apply to a particular boundary layer and to develop
a sensor and actuator system that is capable of providing an appropriate control input
to that boundary layer. In the present work, crossflow-dominated swept-wing’ boundary
layers are the primary interest. These boundary layers are known to undergo a highly
nonlinear transition process that involves, in low-disturbance environments, stationary
waves of longitudinal vorticity. These stationary waves have to potential to be controlled
or suppressed by an appropriate surface roughness configurations that could be provided
by MEMS-based actuators. The work performed here consists of a parallel experimental
and hardware development efforts. The breakdown phase of the crossflow instability is
investigated in the experiments in an effort to determine an appropriate control input.
A MEMS-based roughness actuator system is developed to provide controlled roughness
inputs. The results of the experimental phase conclusively demonstrate that the destabi-
lization of a high-frequency secondary instability is responsible for breakdown. The MEMS
development effort did not produce a useful control device because of certain shortcom-
ings in the present state of MEMS fabrication quality control and overall system integration.

This work was supported by AFOSR grant F49620-97-1-0520 and was managed by
Dr. Thomas Beutner.
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Chapter 1

Introduction

1.1 Overview and motivation

Boundary-layer transition control for swept wings is a goal that holds tremendous promise
for more-efficient aircraft. Swept wings are ubiquitous among both commercial and military
Jet aircraft and thus represent one of the most important avenues of practical, industrially
oriented transition research. Despite the importance of this class of flows and a significant
research effort that spans 50 years, the ability to predict transition behavior for general
swept-wing aircraft does not exist. Moreover, experience has shown that design choices
that can reduce drag due to other influences actually enhance the instability mechanism
present on swept wings. Thus, conventional approaches to drag reduction often fail for this
configuration. .

In order to avoid poor designs that could result from an incorrect approach to transition
control, what is desired is the ability to predict transition behavior at the design stage,
allowing a designer to fully understand the ramifications of various design choices. The
result would be fewer design and testing iterations and more-efficient final vehicles. A more
optimistic goal is the ability to use such a predictive transition model to suggest a practical
transition-control strategy. One of the more promising methods of achieving this sort of
control involves using a micro electical mechanical systems (MEMS) based array of active
roughness actuators on a wing'’s surface. As will be described below, particular roughness
patterns on a swept wing play a tremendously important role in the early stages of swept-
wing transition, and MEMS actuators offer the possibility of actively controlling this process
on fine spatial and temporal scales. This offers the possibility of achieving the tremendous
savings possible with laminar flow, estimated to be 25% of the overall vehicle drag if 80%
of the wings remain laminar on subsonic commercial and military transport aircraft.

What is particularly promising about using MEMS-based microactuators for swept-
wing laminar flow control is that fine control provided by the MEMS actuators will be
amplified through the inherent boundary-layer instability to provide a control effect on a
much larger scale. This means that the power requirement of the MEMS will likely be many
orders of magnitude less than the power savings achieved through drag reduction. (In other
boundary-layer control systems such as distributed suction, this is not always the case.)
Moreover, the control-system requirements and the total number of actuators required may
be quite modest relative to a system that seeks to control a turbulent boundary layer.
Through a detailed understanding of the important instability features it may be possible to
use a very small number of MEMS devices to achieve control over an entire wing by applying
control precisely where it will have the maximum effect. This is in contrast to turbulent
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boundary layers where the experience has been that although a MEMS element can reduce
drag, it does so only in an area of the same order as the MEMS element itself. This
implies that to achieve significant drag reduction of an already turbulent boundary layer,
essentially all of a vehicle’s skin would need to consist of MEMS actuators. This approach
would clearly have enormous manufacturing and maintenance cost and also enormous power
requirements, perhaps more than the power that could be saved through such an approach.

If practical control of an unstable laminar boundary layer is to be achieved using MEMS-
based actuators, a significant question remains: What is the mechanism that triggers the
fina] breakdown of the laminar flow? Until this stage of the process is understood, transition
prediction based on a correct physical model will be impossible.

It is the intent of this work to provide a detailed experimental description of the mecha-
nism or mechanisms that are responsible for the breakdown of laminar flow at the last stage
of swept-wing boundary layer transition and, simultaneously, to design, construct, and im-
plement a MEMS-based microactuator system that is capable of controlling the transition
process on swept-wings. In the experimental phase, what will be of principal interest is the
possibility that breakdown is caused either by a secondary instability or by an absolute in-
stability that is present in the distorted velocity field resulting from the nonlinear primary
instability. Both a secondary instability and an absolute instability have been shown to
be present in rotating disk flow, the model problem for swept wings, and hence both are
candidates for swept-wing breakdown mechanisms. The MEMS actuators will play a signif-
icant role in the experimental objectives because they will provide a critical experimental
capability as variable roughness elements that will be needed to make this assessment.

1.2 Introduction to crossflow transition

The basic features of swept-wing boundary layers are as follows. In the inviscid region
outside a swept-wing boundary layer, the combined influences of wing sweep and favor-
able pressure gradient produce curved streamlines at the boundary-layer edge. Inside the
boundary layer the streamwise fluid velocity is reduced but the pressure gradient is un-
changed. Thus, within the boundary layer, a balance between centripetal acceleration of
the fluid elements and the external pressure gradient does not exist, and a secondary flow
results. This secondary flow is directed perpendicular to the external streamline, toward
the streamline’s center of curvature, and it is therefore referred to as crossflow. Upstream
of the pressure minimum, the crossflow is directed inboard (for standard swept-back config-
urations). Downstream of the pressure minimum, the crossflow is outboard. A schematic
of a crossflow-producing streamline is shown in Figure 1. The associated streamwise, cross-
flow, and resolved boundary-layer velocity profiles are shown in Figure 2. Notice that the
crossflow velocity is zero at the wall where the no-slip condition applies, and it approaches
zero at the boundary-layer edge where pressure gradient and streamline curvature balance.
Because of these boundary conditions, the crossflow velocity profile has an inflection point.
It is well known that an inflection point in a boundary layer is a sufficient condition for an
inviscid instability. This means that the transition behavior for swept wings is fundamen-
tally different from that of unswept wings because the unswept configuration is subject to
the viscous Tollmien—Schlichting (T-S) instability mechanism. -

The fact that swept-wing boundary layers are subject to a different type of instability
was first discovered by Gray (1952) during a flow-visualization flight test experiment. Soon
thereafter, Gregory, Stuart & Walker (1955) produced their classic work that shows the
same crossflow instability mechanism is also present for rotating disk boundary layers. In




both configurations, the instability is manifested as a series of vortices that are aligned to

within a few degrees of the inviscid streamlines. Both traveling and stationary (f = 0)

modes are amplified, and according to linear theory the most amplified mode is a traveling
mode. Despite this, in nearly all experiments that approach flight conditions (i.e., with low
freestream turbulence levels), a stationary mode, not the most amplified traveling mode, is
observed to dominate transition. There are two reasons for this. First, receptivity theory
shows that in low-disturbance environments the initial amplitudes of stationary disturbances
are much larger than those of traveling disturbances. Second, because the stationary vortices
are nearly aligned with the inviscid streamlines, the same v/, v’ disturbance acts on a fluid
element along its entire trajectory. The result is a strong integrated effect that results in
significant mean-flow modification, despite the relatively low amplitude of the stationary
disturbance. The fact that modification of the boundary layer occurs means that its stability
is not well described by linear theory. Instead a nonlinear model is required to understand
crossflow boundary-layer stability for nearly the entire boundary layer. It is the importance
of nonlinearities that makes crossflow such a challenging problem.

- A number of reviews of crossflow stability research are available. Summaries of recent
experimental results are provided by Bippes (1999); Saric, Carrillo & Reibert (1998); and
Reibert & Saric (1997). Other related reviews are provided by Arnal (1997), Reshotko
(1997), Crouch (1997), Herbert (1997a,b), and Kachanov (1996). The historical work is
surveyed by Reed & Saric (1989). In the remainder of this section, the previous results
that are most important for the current work are discussed. The literature covered in
this chapter only includes those works that involve receptivity and the primary crossflow
instability. Chapters 3 and 4 include independent literature reviews for the secondary and
absolute instabilities, respectively.

1.2.1 Receptivity

Receptivity describes the collection of phenomena by which disturbances enter a bound-
ary layer and provide the initial condition for growing disturbances. Common sources of
receptivity are freestream sound and turbulence, surface roughness, and surface geometry.
What is common to these parameters is that they all provide some means for generating
boundary-layer-scale features from globally scaled disturbances. Over the past decade the
experimental and computational approaches to receptivity have been rather divergent. The
experiments have consisted of parametric studies of how freestream turbulence and surface
roughness affect the transition location, whereas theoretical studies have focused on the
effectiveness of various features of periodic surface roughness and on freestream acoustic
(not turbulent) fluctuations.

The effect of freestream turbulence was investigated by Deyhle & Bippes (1996), who
performed transition measurements on a crossflow-dominated swept-plate model in a num-
ber of different wind-tunnel facilities with varying freestream turbulence levels. They found

that for turbulence intensities above Tu = 0.0015, where Tu = \/ -%;(u’2 + 02 + w?) /U,
transition is dominated by traveling waves, but that for lower turbulence levels, station-
ary waves dominate. Surprisingly, for increased turbulence levels where traveling waves
dominate but the turbulence intensity is not too high, 0.0015 < T4 < 0.0020, transition
is actually delayed relative to low-turbulence cases at the same Reynolds number. This
behavior means that wind-tunnel transition results may have no bearing on flight results
if the wind tunnel has a moderate or high turbulence level and traveling waves dominate
transition.




The receptivity mechanism for the stationary vortices that are important for transition -
in low-disturbance environments is surface roughness. This was conclusively established
by Miiller & Bippes (1989), who translated a swept flat-plate model relative to the test
section and found that the recurring stationary transition pattern translated with the model.
Therefore the instability features had to be related to model roughness rather than to fixed
features of the freestream flow generated by nonuniformities of the screens or other effects.
Juillen & Arnal (1990) find that for isolated roughness elements the von Doenhoff & Braslow
(1961) correlation that describes the limit for bypass transition is correct.

Roughness studies by Radeztsky, Reibert & Saric (1999) show that the characteristics of
isolated 3-D roughness play a very important role in transition behavior. Roughness is most
effective at generating crossflow disturbances at or just upstream of the neutral point, z/c =
0.02 in Radeztsky et al.’s experiment. The roughness diameter must be greater than 10% of
the most amplified stationary wavelength to be effective, and the transition location is quite
sensitive to roughness height even for roughness Reynolds numbers as low as Reg = 0.1.
Natural surface-roughness amplitude can also play a significant role in transition location.
Radeztsky et al. (1999) find that a decrease in surface-roughness amplitude from 9.0 pm
rms to 0.5 um rms delays transition from z/c = 0.40 to 0.61 for Re, = 2.7 x 108. Another
decrease to 0.25 um rms delays transition even further to z/c = 0.68. Radeztsky et al.
(1999) also determine that transition behavior is insensitive to sound even at amplitudes as
high as 95dB.

A number of theoretical and computational approaches to swept-wing boundary-layer
receptivity have been applied. Some of the miore recent include an adjoint equation ap-
proach by Fedorov (1989), a PSE approach by Herbert & Lin (1993), and a DNS approach
by Spalart (1993). Crouch (1994) and Choudhari (1994) both consider the receptivity
of Falkner-Skan—Cooke (FSC) boundary layers as perturbations of a parallel boundary
layer. The framework of their approaches allowed both the surface roughness and acoustic
freestream disturbances to be considered as receptivity sources. Choudhari (1994) extends
his work to consider acoustic-wave-angle effects and a variety of different roughness configu-
rations including isolated roughness, roughness arrays and lattices, and distributed random
roughness. Crouch (1994) emphasizes a framework equally applicable to T-S and crossflow
disturbances. Both authors note that because traveling-wave receptivity scales with two
small parameters, the freestream velocity-fluctuation amplitude and surface-roughness am-
plitude, whereas the stationary-wave receptivity scales with only one, the surface roughness,
it can be expected that stationary waves will dominate for low-disturbance environments
and that traveling waves will only appear for large freestream acoustic variations. The
experiments of Radeztsky et al. (1999) confirm this expectation.

A more recent approach by Collis & Lele (1999) begins by solving the steady Navier-
Stokes equations in the leading-edge region of a swept parabolic body and then using that
solution as a basic state for a linearized steady disturbance system that includes surface
roughness. Comparing the results of this approach to those obtained by Choudhari (1994)
and Crouch (1994) shows that receptivity to surface roughness is enhanced by convex sur-
face curvature and suppressed by nonparallelism. Neglecting nonparallelism causes the local
approach to overpredict receptivity by as much as 77% for the most amplified stationary
crossflow wavenumber. The error introduced by neglecting nonparallelism is most severe for :
wavelengths in the range most amplified by the crossflow instability and for roughness close
to the first neutral point. The implication is that amplitude-based transition-prediction
methods need to employ a receptivity model that includes nonparallelism because the cross-
flow modes that dominate transition are most strongly affected by this influence.




What is not considered in any of the receptivity models is freestream turbulence. Sound
has been considered, but it is known not to be important. However, the DLR, Géttingen
group has shown that turbulence can be very important above a certain threshold, but no
models exist that predict this behavior. \

1.2.2 Primary instability

The primary crossflow instability has been extensively studied in a number of experiments
over the past decade. The key findings are those listed above: the instability modes are
traveling and stationary vortices that are nearly aligned with the inviscid streamlines, sta-
tionary modes dominate in low-disturbance environments, and nonlinear effects appear early
in the development of the boundary layer. The first experiment that demonstrated the im-
portance of nonlinearities was that of Saric & Yeats (1985), which identified harmonics of
the fundamental stationary mode on a swept flat plate with a pressure gradient. Further
work using swept plates has been extensively carried out at DLR. These experimerits ver-
ify that linear theory is correct for traveling-wave-dominated boundary layers (see Bippes,
1999, for a summary). In contrast, experiments at the Arizona State University Unsteady
Wind Tunnel on a 45° swept wing by Reibert, Saric, Carrillo & Chapman (1996) and Saric,
Carrillo & Reibert (1998) show that the stationary modes are not correctly described by
linear theory. Using spanwise arrays of artificial roughness near the leading edge to perform
modal-growth studies, Reibert et al. (1996) show that when the most amplified station-
ary mode is forced, amplitude saturation occurs well upstream of the transition location,
where linear theory indicates that the stationary mode should still be strongly amplified.
The amplitude at which the fundamental mode saturates depends only on Reynolds num-
ber and the mode’s wavelength; it is independent of the initial amplitude. In addition to
amplitude saturation, another nonlinear feature is the growth of harmonics. When 12-mm-
spaced roughness arrays are applied, 12-mm, 6-mm, 4-mm, and 3-mm stationary waves are
observed downstream. However, no subharmonics (e.g., 24- or 36-mm waves) are detected.

Using the information regarding the nonlinear behavior of the stationary waves, Saric
et al. (1998) discovered that crossflow transition can actually be suppressed using subcriti-
cally spaced roughness arrays. The idea is that forcing a stationary mode with a wavelength
shorter than the most amplified wave will produce only short wavelength modes, none in
the longer, more amplified wavelength band. Because the deformation of the mean flow
that results from the addition of the short-wavelength roughness changes the stability of
the boundary layer, what results is a boundary layer with rather large amplitude span-
wise periodicity of the input wavelength that is stable to the longer-wavelength stationary
modes. The most amplified waves never appear and transition is suppressed. Saric et al.
(1998) were able to delay transition well past the pressure minimum at z/c¢ = 0.71 on the
45° swept-wing model using 6-um-high, 8-mm-spaced roughness at Re, = 2.4 x 108, where
the most amplified stationary wavelength is about 12mm. The transition location was even
downstream of where it occurs for a highly polished leading edge without artificial rough-
ness. This result is quite exciting because it provides the possibility of completely passive
crossflow transition control.

Many of the computational works include both primary stability calculations and
secondary stability calculations that address the behavior of high-frequency fluctuations
present in the saturated primary disturbance field. Papers that include both calculations
are covered in two parts: the primary stability calculations are discussed here and the
‘'secondary stability calculations are discussed later in Section 3.1.




What has proven to be the most effective means of modeling the crossflow instability is
an approach using nonlinear parabolized stability equations (NPSE). Nonlinear parabolized -
stability codes incorporate mean-flow modification produced by the stationary vortices and
include surface curvature and nonparallel effects. Recently, both Malik, Li, Choudhari &
Chang (1999) and Haynes & Reed (2000) have used the NPSE approach to produce excellent
computational agreement with the experiments of Reibert et al. (1996) that demonstrate
the nonlinear growth and saturation of stationary crossflow vortices. The computational
results confirm that saturation amplitudes are independent of the initial crossflow amplitude:
if it is sufficiently high to cause saturation. The NPSE codes further demonstrate that the
disturbance growth is sensitive to very weak surface curvature.

An alternative DNS approach to the late transition stages was undertaken by Win-
tergerste & Kleiser (1996). These computations are an FSC approximation of the DLR
swept flat-plate experiment. The emphasis of these calculations was to examine the vortex
structure with a more highly resolved grid than the earlier DNS crossflow calculations by
Meyer & Kleiser (1989). The approach by Wintergerste & Kleiser (1996) is local, temporal
stability with local parameters to match 80% chord: R =826, sweep angle ¢. = 46.9°, and
Hartree parameter By = 0.63. These calculations identified the weak vortex that rotates
counter to the main stationary crossflow vortex predicted by Malik et al. (1994), and they
demonstrated breakdown to turbulence soon after, but the results do not appear to produce
the secondary instability described below.

1.2.3 Implications for N-factor transition prediction

The strategy most often employed for transition prediction is known as the e method,
proposed independently by van Ingen (1956) and Smith & Gamberoni (1956). This method
consists of finding the envelope of the growth curves of all possible instability modes using
linear stability theory. Transition is expected to occur at the first point for which the
ratio of any single mode’s amplitude to its initial amplitude exceeds a threshold value.
The threshold for transition is determined experimentally and is expressed in exponential
form, hence eVN. Typically, N = 9 leads to transition, although the N-factor can vary
widely depending on a number of factors. Using this approach, transition experiments are
performed either in a wind tunnel or in flight to produce an N-factor for transition. This
N-factor is then applied to similar configurations in the hope that the value will be accurate
enough for design purposes. Typically, wind-tunnel tests at low Reynolds numbers are used
to produce N-factors that are then applied to flight conditions.

Successful implementation of the eV method relies on a number of assumptions. The
first and most fundamental requirement is that the process by which transition occurs in
the baseline experiment must be the same process as that occurring in practice. Second,
the method assumes that there is a uniform distribution of initial disturbance amplitudes
across all of the relevant instability modes and that the amplitudes in the experiment are
equivalent to those in practice. The last assumption is that the growth of the instability
modes is accurately described by linear stability theory throughout most of the transition
region, although this is the weakest requirement because some degree of nonlinearity may
be lumped into the particular N-factor. However, each of these assumptions is strongly
violated in swept-wing transition.

Perhaps the most serious flaw is that the character of the transition process—whether
it is dominated by stationary or traveling waves—depends on the magnitude of freestream
disturbances. This means that while the transition mechanism in flight is always stationary




waves, in many wind tunnels, traveling waves dominate. So an N-factor produced under
high-disturbance conditions is invalid for low-disturbance conditions. Next is the idea that
there is a uniform distribution of initial disturbance amplitudes. This may be valid for
traveling crossflow disturbances, but for stationary waves, this depends entirely on the
surface of the wing. A laboratory model may be uniformly polished and free from any
imperfections, but any wing in service has numerous flaws that produce crossflow waves,
and the distribution of these is not known. And finally, the fact that nonlinearities become
important very early in the development of the boundary layer and become so important as
-to cause amplitude saturation means that any method based on linear theory predictions
cannot be successful.

1.3 Objectives and outline

The most recent series of primary instability experiments conducted by Reibert et al. (1996)
and Saric et al. (1998), and the excellent computational agreement that has been achieved
with these results using the NPSE computations of Malik et al. (1999) and Haynes & Reed
(2000), show that the primary crossflow instability is well understood. What is clear is that
the primary crossflow instability is not directly responsible for transition to turbulence.
However, it appears that the nonlinear evolution of the primary instability and ampli-
tude saturation result in a spanwise-periodic laminar state in which the primary crossflow
modes have stabilized. Therefore, physically correct transition prediction cannot rest on
the primary instability alone. In light of this, another transition mechanism is needed to
understand why transition occurs where it does. The objective of this work is to determine
experimentally what mechanism acts in the final stage of transition to trigger the breakdown
to turbulence.

The mechanism responsible clearly acts on the highly distorted boundary layer. Thus
understanding this instability represents quite a challenging problem both experimentally
and computationally because this aspect of the flow requires that one use the flow that
results from the primary instability process as a basic state. So the basic state is itself
the result of a highly sensitive instability process that must be very well controlled. This
means that all of the care required to perform the previous experiments is only sufficient to
provide the initial condition for understanding breakdown.

It appears most likely that breakdown of the laminar flow may be caused by one or
both of two separate instabilities: a secondary instability and an absolute instability. The
secondary instability consists of high-frequency fluctuations that have been observed just
upstream of breakdown in several crossflow experiments. Flow-visualization experiments
on rotating disks and for Gortler boundary layers have identified what may be equivalent
high-frequency modes, and these instabilities appear to be responsible for transition in
- those cases, so the existing experimental evidence points to a secondary instability. In
light of this, computational models of the phenomenon have been created and these seem
to support this view. However, the second possibility, that transition is caused by the
presence of an absolute instability, is supported by the fact that an absolute instability
has been conclusively demonstrated to exist for rotating disk flows, the model problem for
swept-wing boundary layers. Moreover, the results of Reibert et al. (1996) show that in
certain circumstances the transition location for crossflow is insensitive to the leading-edge -
roughness amplitude, and insensitivity to initial conditions can frequently be a symptom
of an absolute instability. Because of this evidence, both of these mechanisms need to be
examined closely if one is to understand the breakdown of crossflow boundary layers.
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Given these two possible breakdown mechanisms, the objectives of the current work are
as follows. The first is to establish a swept-wing model that provides a crossflow bound-
ary layer with a very well controlled primary instability. The second is to determine if a
secondary instability does exist, and if so, to determine under what conditions it becomes
unstable, its growth characteristics, and ultimately where it triggers breakdown. The data
presented will be suitable for comparison with numerical simulations. The third objective
is to determine whether the swept-wing boundary layer shows any evidence of supporting
an absolute instability. Although this has been observed in a rotating disk boundary layer,
no evidence has been observed for swept wings. However, the absolute instability experi-
ment poses special challenges for maintaining a good basic state, even beyond those of the
secondary instability, so it may simply be that the absolute instability experiment could
not be performed before now. In parallel with these three experimental objectives, the
fourth objective is to design, install and test MEMS-based roughness actuators for use as
laminar-flow-control devices on a swept-wing model.

The layout of this document is structured around these four objectives. This intro-
ductory chapter has presented a review of the receptivity and primary instability aspects
of crossflow stability—features that are important both for the secondary instability and
absolute instability experiments. In Chapter 2, a description of the experimental facility,
hardware, and techniques that are common to both the secondary instability and absolute
instability experiments is presented. That chapter includes a description of the design phi-
losophy of the swept-wing experiment. The philosophy is not restricted to just the present
work but encompasses the experience of the last decade of swept-wing experiments. This
section also includes a detailed description of the MEMS development efforts. Chapter 3
consists of the investigation of the secondary instability as a crossflow breakdown mecha-
nism. The chapter begins with a review of the literature specific to the secondary instabil-
ity, then progresses to specific experimental techniques, results, and discussion. Chapter 4
presents the absolute instability in the same manner: a self-contained literature review,
experiment description, and results and discussion. Overall conclusions that compare the
two instabilities are presented in Chapter 5.




Chapter 2

Experimental Design, Facility, and
Techniques

2.1 General philosophy

The present experiment is the latest in a series at the Arizona State University Unsteady
Wind Tunnel involving the stability of crossflow-dominated swept-wing boundary layers.
It is to the great advantage of the current work to have inherited much of the approach
and physical setup from the previous experiments of Dagenhart (1992), Radeztsky (1994),
Reibert (1996), Carrillo (1996), and Chapman (1996). However, two substantial features
differentiate this experiment from its predecessors. The first is that the subject of the current
experiment is a detailed examination of the breakdown stage of crossflow transition, whereas
the previous experiments were chiefly concerned with the primary instability behavior or
with receptivity to surface roughness. The other principal difference is that the swept-wing
model used in all of the previous experiments has been replaced with a new model that
incorporates a modular leading edge and provides a pressure contour that is somewhat
more advantageous for experimental simplicity. The modular design has great advantages
in terms of experimental flexibility, but it has proven to be a challenge to incorporate into
a highly sensitive stability experiment.

The old and new swept-wing models share a design philosophy that has its origins with
the work of Dagenhart & Saric (1999) (which originally appeared as Dagenhart, 1992). The
idea is to provide an experimental platform that captures all of the essential features of a
swept wing that undergoes crossflow-dominated transition and yet provides the simplest pos-
sible experimental and computational problem. If all of the important physics are included -
in the experiment and good agreement with computations is achieved, then the computa-
tions can be used with confidence to obtain results with more realistic operating conditions.
This implies that a swept wing is preferable to a swept flat plate because the wing provides
surface curvature, and the results of Haynes & Reed (2000) indicate that even though the
curvature is quite small, it is an essential element for correctly predicting stationary-mode
growth rates. The model is not tapered. This means that a spanwise-uniform basic state
can be established, greatly simplifying both the experiment and stability calculations. Ta-
per can be included in stability calculations, of course, but the computations would simply
have to be validated without taper. If subsequent calculations indicated that taper could
influence the stability behavior, that discovery would require a new experiment for valida-




tion. Without an indication that this could occur, and if so, for what parameter range,
there is no reason to make the experiment more complicated than necessary.

" The next idea is to provide a model with boundary layers that are sufficiently thick
to allow for relatively easy and well-resolved boundary-layer velocity measurements and
to simultaneously provide sufficient crossflow to cause transition. These requirements con-
flict because thick boundary layers can be achieved by restricting the experiment to low
Reynolds numbers, but at too low a Reynolds number the instability would not be strong
enough to produce transition. One of the first means of improving the prospect for strong
crossflow and a thick boundary layer is to select a pressure gradient that locates the pres-
sure minimum as far back as possible. This means that the boundary layer can develop
over the longest possible distance without the boundary layer becoming unstable to T-S
waves and without the crossflow direction changing. The pressure gradient can also be used
to enhance the crossflow by making the pressure gradient as strong as possible. Although
this means that strong negative lift is preferable, experience at the Unsteady Wind Tunnel
has shown that the wall liners used to maintain spanwise-uniform flow are difficult to con-
struct and maintain when there is strong lift. Therefore a pressure contour that provides
a strong pressure gradient with a late pressure minimum at zero lift is the optimum con-
figuration. Enhanced crossflow can also be produced by increasing the sweep angle of the
wing. However, exceeding A = 45° becomes impractical for the hotwire traverse system.

Starting with Dagenhart (1992), all of the previous Unsteady Wind Tunnel crossflow
stability experiments employed a swept-wing model with an NLF(2)-0415 profile (Somers &
Horstmann, 1985) and 45° sweep. The NLF profile places the suction-side pressure minimum
at 71% chord. Transition on this model is always observed upstream of 71% chord, so the
T-S instability does not contribute to transition, nor does the Gortler instability, because
the concave region also occurs downstream of 71%. The nose radius and sweep are such that
leading-edge contamination is not present. The wing used in the current work, designated
the ASU(67)-0315, was designed by Reibert around the same principles with the additional
feature of generating significant crossflow at zero lift. The unswept chord length of the
new model is 1.829m, the sweep angle is 45°, and the angle of attack is set at —3°, the
zero-lift angle. The theoretical inviscid pressure contour for this configuration, including
the influence of the wind-tunnel walls, is computed using the MCARF code of Stevens et al.
(1971) and is shown with the wing contour in Figure 3. The code does not account for
displacement thickness growth on either the model or the walls.

2.2 Swept-wing model

The ASU(67)-0315 wing was constructed to provide a flexible test platform on which a
variety of boundary-layer transition-control experiments can be conducted. To this end, the
leading edge of the wing is not continuous, but includes a leading-edge slot in the middle
third of the span that extends to approximately 20% chord. This slot accepts modular
leading-edge inserts that can provide any sort of boundary-layer treatment, in particular
the MEMS roughness actuators. The leading 10% chord of the main body of the model is
a solid aluminum piece, hand polished to a 0.2-pum-rms surface finish. The remainder of
the main body consists of an aluminum frame and foam core covered by fiberglass. The
fiberglass construction means that the wing weighs approximately 350kg, allowing it to
be much more easily handled than the all-aluminum NLF wing. (The NLF wing weighs
approximately 725kg.) The model includes two lines of 29 suction-side pressure taps at
various chord locations. The lines of taps are oriented in the X direction as indicated in
Figure 4. ‘

10




The leading-edge insert used for the current work is constructed of a solid aluminum
piece machined to match the contour of the main body of the wing and to provide an
exact fit at the junction between the insert and the main body. The surface of the insert
is hand polished to the same 0.2-pum-rms finish as the main body’s leading edge. Figure 5
is a schematic of the leading-edge insert used in the present work. A slot centered at 2.5%
chord is cut in the leading-edge insert. The slot extends 42.6 mm in the chord direction
and 718 mm in the span direction. This slot accepts a smaller insert into which any one
of several variable-amplitude roughness devices can be placed. Several of these smaller
variable-roughness inserts are used in the present experiment. For the secondary instability
measurements described in Chapter 3, a blank insert! that simply follows the contour of the
Wing is used. To establish a uniform disturbance field, an array of periodic static roughness
similar to that used by Reibert et al. (1996) and Saric et al. (1998) for the modal growth
experiments is applied to this blank insert.

2.3 MEMS roughness insert

The MEMS development efforts of this work focused on providing MEMS actuators that
would be contained in the leading-edge insert and would provide either static, quasi-static,
or unsteady control. The basic design of the actuators was developed by the Case Western
Reserve University (CWRU) MEMS development group and consisted of a multi-layered
structure that consisted at the top layer (in contact with the boundary layer) on an array
of regularly spaced, circular, piston-like surfaces. The various designs had either 2-, 3-, or
4-mm diameter piston surfaces on 8 or 12-mm centers. Below the surface of the element,
a rod connected the upper piston face to a flexible membrane that would deflect upwards,
moving the piston face into the flow, several microns, when a cavity beneath the flexible
membrane was heated using a small electrical resistor. This system was capable of providing
several-micron deflections of the piston element either in steady or unsteady state.

The MEMS elements were manufactured on 100-mm-diameter silicon wafers using typ-
ical MEMS fabrication techniques. The principal difficulty of the assembly process was the
adhesion of the piston element to the adhesive layer. This sort of bond between the silicon
and elastomer layers is quite difficult to achieve and was prone to a significant failure rate.
Failure of the elastomer/silicon bond became quite significant, especially in light of the
particular action of the nonlinear evolution of the unstable modes in crossflow boundary
layers. In particular, control of the boundary layer is achieved by applying a roughness
pattern with a spacing less than the most unstable wavelength. In the ASU experiment,
this means applying an 8-mm input when 12-mm waves are most unstable. The failure of a
single roughness element leads to a 16-mm component in the input wavenumber spectrum
and this leads to enhanced transition because 16-mm waves are nearly as unstable as 12-mm
waves. Because of this, if a single element on a 100-mm strip failed to bond correctly, the
entire strip could not be used. A significant bond failure rate at the time of manufacturing
meant that nearly every strip produced by the MEMS production facility was unsuitable
for the experiment. Beyond being simply an issue of manufacturing technique, the problem
of single-point element failure has serious consequences for flow-control in practice. If the
failure of a single MEMS element means that (at least locally) the situation on the wing

'Henceforth the term “insert” alone will refer to the smaller variable-roughness insert, because the same
large leading-edge insert is used for the entire work. Where the context could be unclear, “variable-roughness
insert” or “leading-edge insert” will be used for the smaller and larger inserts, respectively.
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may be worse than if no control had been attempted, a much-more-robust actuator design
must be developed for use in practice.

The work performed by the ASU group 1mp1ementmg the few defect-free MEMS actu-
ators raised other serious questions about the applicability of MEMS actuators to ezternal
flow control given the current level of MEMS technology. Some of the key difficulties
encountered were (1) implementing a flat silicon surface into a curved wing surface, (2)
bonding the silicon wafer slices permanently to the aluminum wing, (3) maintaining a flush,
no-roughness surface at the wing/wafer surface, and (4) maintaining the elements and re-
placing failed elements without damaging nearby operative elements. The first and third
problems, implementing a flat silicon surface into a curved wing surface and maintaining a
good-quality, no-roughness junction are particularly important for control of the crossflow
instability because of its sensitivity to leading-edge roughness. The MEMS devices, as de-
signed, essentially required hand installation, and because this could not be accomplished
while maintaining sub-micron-level surface quality at the silicon/aluminum or silicon/silicon
junctions, the application of the MEMS wafers actually led to larger levels of uncontrolled
surface roughness than the actuators themselves were capable of providing. The fact that
the actuator strips were much longer (on the order of 100 mm) than the most unstable
crossflow waves (10-16 mm) does not prevent difficulties, because even isolated roughness
sites can be detrimental, as demonstrated by the experiments of Radeztsky et al. (1999).

Because the experiments require roughness with better quality control than the MEMS-
based elements provide, a decision was made to manufacture at ASU a pneumatically acti-
vated roughness insert. This insert provides uniform activation of an entire array of elements
on a slow time scale. This action is sufficient to perform the experiments of interest, but does
not extend into the unsteady or non-uniform roughness forcing the MEMS-based actuators
might provide. The pneumatically driven insert has the capability to vary the roughness
height, a necessary component of the absolute-instability experiments. It has an interior
chamber that is pressurized from a supply outside the wind tunnel, and a 12-mm-spaced
spanwise array of 3-mm-diameter holes is drilled from the contoured upper surface of the
insert into the interior pressure chamber. The array of holes is covered with a 25-mm-wide,
40-pm-thick strip of polyester tape, and when the interior of the insert is pressurized, the
tape deforms into a periodic array of artificial roughness. The variable-amplitude roughness
system provides a means of producing transient roughness forcing that is used to search
for an absolute instability. A schematic of the small variable-roughness device is shown in
Figure 6. In the future, such an insert could be manufactured with a MEMS-based valve
controlling each element in the roughness array with the MEMS valves located inside the
wing.

The chief difficulty associated with the new model is the quality of the surface that results
from the installation of the modular pieces. It is known from the earlier work of Radeztsky
et al. (1999) that micron-scale isolated roughness features of a surface are sources of crossflow
receptivity. This means that even the smallest imperfections at the junctions between the
small and large inserts and the large insert and the wing can produce deformations of the
mean flow that could overwhelm any boundary-layer features generated by the roughness
arrays that are intended to provide a uniform disturbance field. Fortunately, while crossflow
boundary layers are extremely sensitive to 3-D roughness, they are not sensitive to 2-D
(spanwise-constant) roughness. Crossflow requires a source of streamwise vorticity that 3-
D roughness provides, but 2-D roughness does not. So, while the corners of the junctions
pose a problem, the long sides of the variable-roughness insert and the large leading-edge
insert that run in the span direction do not adversely affect the flow. Because of the large
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spanwise extent of the inserts, the corners are far enough from the measurement region that
the crossflow waves generated from their corners do not affect the measurement region. This
is confirmed with a simple naphthalene flow visualization.

The variable-roughness inserts present a more challenging problem because application
of the polyester tape over the hole array cannot be achieved without introducing several
types of 3-D roughness. It is particularly important that the residual roughness level be
as low as possible when the roughness is nominally inactive. Reibert et al. (1996) have
shown that because of nonlinear saturation of sufficiently large amplitude disturbances, the
state of the flow in the breakdown region can be nearly independent of the leading-edge
roughness amplitude. Recall that in Reibert et al.’s experiment 6-pum roughness and 48-pm
roughness produced nearly identical transition behavior at Re, = 2.4 x 10%. On the other
hand, Radeztsky et al. (1999) found a strong dependence on surface-roughness level for
isolated roughness in the micron to submicron range, so this low level must be within the
capabilities of the variable-roughness device.

There are several disturbance sources when the roughness is inactive. These are dis-
crete flaws due to bubbles“and small particles under the tape surface, sections of surface
waviness in the tape, and a small degree of surface pucker associated with the application
of the tape over the holes. The discrete flaws appear randomly and are quite small, not
only in height but also in diameter, so it is shown that these will not cause a significant
response. Radeztsky et al. (1999) observed that isolated roughness elements are most ef-
fective at crossflow-wave generation when their diameter is on the order of one-quarter of
the most amplified crossflow wavelength (10-14 mm for the present experiment, depending
on Reynolds number), and the small random flaws are much smaller than this, always less
than 1mm in diameter. The surface waviness is a more significant concern because this
imperfection occurs over several millimeters of span and extends over the entire tape width.
However, spanwise hotwire scans of the type described below are performed at chord lo-
cations just aft of the roughness insert location at 10%, 15%, and 20% chord, and these
measurements indicate that the most significant source of crossflow-wave generation when
the insert is inactive is the deformation of the tape over the holes. Some deformation is"
inevitable simply because of the geometry of the device. Because the holes are at the most
amplified crossflow wavelength and their diameter is exactly one-quarter of that spacing,
it should not be surprising that these flaws appear to dominate the flow on the forward
section of the wing. A spanwise hotwire scan at constant offset from the surface illustrates
the extent of mean-flow deformation at z/c = 0.20 and Y = 1.0mm for Re, = 2.4 x 108
(Figure 7). The spatial spectrum of this mean-flow data (Figure 8) shows that the dominant
wavelength of the deformation is 12 mm at this position when the roughness is inactive. De-
spite the fact that there is some mean-flow deformation when the roughness is nominally
inactive, the device is suitable for the absolute instability experiment. This is demonstrated
in Chapter 4 where it is used to change the transition location for a particular Reynolds
number flow. The fact that this is possible allows the experiment to be performed. If the
magnitude of the residual, inactive roughness were too large, the disturbances it produced
would saturate and produce transition at the same location as the activated roughness state.

As for the active variable roughness, what is needed is the general relationship between
the pressure difference across the tape surface and the height at the center of each roughness
element relative to the undeformed surface. Also, the shape of the roughness elements
is important for inclusion in receptivity models such as that of Collis & Lele (1999). To
produce deformation of the tape surface a computer-controlled pressure system is employed.
An external supply tank is maintained at 5.5atm and a regulator valve supplies air from
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this tank at 0.15atm to a computer-controlled valve that regulates the pressure inside
the variable-roughness insert. The system includes a pressure transducer, the test-section
static pressure sensor, and the pressure coefficient data that give the pressure difference
across the tape membrane. With no air flow in the tunnel, the relationship between the
pressure difference and the displacement is measured using a confocal laser displacement
sensor that is described below. A family of pressure-versus-displacement curves is shown
in Figure 9. While precise control of the roughness height could not be achieved using
the system, the general trend is acceptable for the purposes of the absolute instability
experiment where simply high and low roughness amplitudes are needed. The shapes of the
activated roughness elements for two pressure levels.are shown in Figures 10 and 11.

2.4 Wind tunnel, test section, and traverse

The experiments are conducted in the Arizona State University Unsteady Wind Tunnel.
The Unsteady Wind Tunnel is a closed-loop, low-speed, atmospheric-pressure facility orig-
inally built and operated by Dr. Philip Klebanoff at the National Bureau of Standards.
Following Dr. Klebanoff’s retirement, the tunnel was moved to Arizona State University
and reconstructed between 1984 and 1988 with numerous flow-quality improvements. The
design and operation of the wind tunnel are intended to provide the best possible con-
ditions for conducting transition-to-turbulence experiments. With this in mind, quite a
significant investment has been made in high-quality screens, honeycomb, a settling cham-
ber, a contraction cone, turning vanes, and vibration-isolation strategies. The fan consists
of a 1.8-m-diameter, 9-rotor, 11-stator axial stage, powered by a 150-hp DC motor. The
motor is computer controlled and can maintain speed to within 0.01% of the set point.
Further details of the facility’s design and capabilities are given by Saric (1992), and details
of the computer-control capabilities are described by Reibert (1996). An schematic layout
of the Unsteady Wind Tunnel is shown in Figure 12. ‘
The key features of the tunnel that bear directly on the present experiment are the
freestream conditions in the test section. The maximum freestream speed that can be
achieved in the test section is 35m/s, and as noted above, any fan speed can be held to
within 0.01% (although this level of precision is beyond the accuracy to which the freestream
speed can be reliably measured). The maximum speed corresponds to a chord Reynolds
number of approximately 3.8 x 108 for the swept-wing model. The baseline operating point
for the current experiment is Re, = 2.4 X 108, and for the temperatures at which the tun-
nel operates, this corresponds to freestream speeds between 22 and 23 m/s. The baseline
Reynolds number provides the best combination of experimental parameters. Breakdown
occurs near 50% chord, in the middle of the traverse’s range, and the boundary layer is
reasonably thick (3mm) in the transition region, so well-resolved boundary-layer profiles
are easy to obtain. Wind-tunnel heating is a concern at this speed but it is not so severe as
to be unmanageable. The freestream turbulence level that is achieved in the test section is
exceptionally low due to the very careful attention that is paid to turbulence-control devices
upstream and vibration control. At 20 m/ s, the turbulence level u'/Uy is less than 0.02%
(using a 2-Hz high-pass filter). Both the v’ and w' fluctuation levels are less than half that
of u'. The sound level in the test section at the same conditions is below 85 dB. Recall that
Deyhle & Bippes (1996) found that stationary waves dominate crossflow boundary layers
only below Tu = 0.15% (where Tu includes contributions of all three fluctuating-velocity
components), so the low turbulence level of the Unsteady Wind Tunnel is essential for con-
ducting a stationary-wave-dominated experiment. Perhaps the most significant limitation
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of the Unsteady Wind Tunnel is the lack of temperature control. There is no active heat
removal mechanism, and the fan motor is inside the tunnel so all of the excess heat gener-
ated by the motor increases the temperature of the flow. This is reflected in the approach
to speed control and hotwire calibration. During all extended-duration experiments, the
speed is adjusted regularly to maintain a constant Reynolds number because the kinematic
viscosity of air increases as its temperature increases. Additionally, the hotwire calibration
(discussed below) includes a sophisticated temperature compensation.

The test sectionis 1.4m x 1.4m x 4.9m. The contraction cone preceding the test section
is a fifth-degree polynomial with a 5.3:1 contraction ratio. The test-section floor drops by
50 mm over its length to minimize the decrease in axial pressure gradient that accompanies
boundary-layer growth on the model and the test-section walls. The test section includes
a pitot tube for steady freestream static and dynamic pressure measurements and an RTD
thermometer for freestream temperature measurements. The wing is mounted vertically
in the test section both to simplify the supporting structure and to provide easy access to
the suction side of the wing by the instrumentation mounted on the front wall of the test
section. Moving from bottom to top, the sweep of the wing is forward, which prevents dust
particles from settling on the leading edge and becoming unwanted receptivity sources. A
support shaft runs through the wing at z/c = 0.25, parallel to the leading edge. This shaft
mounts in a bearing just below the test-section floor that allows the wing to be set at 1°
angle-of-attack increments. Unfortunately, after the wing was installed, it was discovered
that the keyway in the shaft that adjusts the angle of attack was machined incorrectly.
Because of this problem, the wing is not at the —3° design position, but is at —3.4°.

A high-precision, computer-controlled traverse mechanism is situated outside the front
wall of the test section with access to the suction side of the wing. The traverse supports a
sting that holds a boundary-layer and freestream hotwire. The traverse consists of a frame
that moves 1.25m in the axial direction along rails powered by a lead screw controlled by
micro-stepping motors. The traverse frame includes stepper motors that move the sting
that holds the hotwires in the vertical and wall-normal directions. The system includes
optical encoder feedback to improve its reliability. The resolution and travel in the various
coordinate directions are indicated in Table 2.1. Two views of the traverse system are given
in Figures 13 and 14. The traverse is designed so that only the sting extends into the test
section; the traverse mechanism is enclosed in a pressure box outside the test section. The
pressure box nearly eliminates flow through the slot in the front of the test section that
admits the sting. The panel through which the sting extends is driven vertically by two
additional stepper motors that are coordinated with the vertical motion of the traverse.
The slot itself is closed with a zipper that follows the sting, further reducing disturbances
associated with the sting and access slot. The sting is designed to allow the boundary-layer
hotwire probe support to be rotated toward the wing so that the sting itself need not be
close to the wing. Additionally, the boundary-layer hotwire can be rotated about the probe-
support axis so that the hotwire can be positioned parallel to the wing surface. The sting
is shown in Figure 15 and additional details regarding its design are given by Radeztsky
(1994). Further details regarding computer control of the traverse are given by Reibert
(1996). :

For the swept-wing model to meet the design goals of providing thick boundary layers
and strong crossflow, while simultaneously maintaining spanwise uniformity, the use of

~contour wall liners is required. The liners are intended to enforce root and tip boundary
conditions that mimic what would exist for an infinite-span wing, despite the fact that the
model must be quite large relative to the test-section dimensions to achieve an acceptable
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Direction | X, axial Y, wall normal Z, vertical

Travel 1250 mm 100 mm 175 mm
‘Step Size | 12um 0.7 um 1.3um

Table 2.1: Traverse Capabilities.

Reynolds number range. A schematic of a 45° swept wing and liners for the zero-lift
condition is shown in Figure 16. The liner design and construction techniques are thoroughly
documented by Dagenhart & Saric (1999) and Radeztsky (1994), but the basic idea is as
follows. First the pressure distribution predicted by the MCARF code is used to determine
the surface of all streamlines passing through an arbitrary horizontal (X, Z constant) line
upstream of the model. The two sides of the surface are constructed in full scale using
styrofoam, and these two pieces are attached to the ceiling and floor of the test section to
provide the root and tip boundary conditions, respectively. The suction-side and pressure-
side walls of the test section are not treated with liners because these surfaces do not
adversely affect the difficulty of stability calculations. The pressure field about the wing is
slightly different from what it would be in free flight, but computations can use the pressure
field calculated with these walls in place. From an experimental standpoint, suction-side
and pressure-side wall liners would be significantly more challenging to implement, so not
including these is a significant advantage in terms of experimental simplicity.

The extent to which the model and liners produce the conditions predicted by the
inviscid code can be assessed by comparing the pressure measured using the surface pressure
taps to the pressure distribution that is shown in Figure 3. The pressure at each tap is
measured relative to the freestream static pressure and the difference is normalized by
the freestream dynamic pressure, pUZ /2. This gives 3-D pressure coefficients Cp3. (The
data are acquired using a 10-torr differential pressure transducer described below.) The
Cp,3 measurements differ from Cp2 predictions shown in the figure only in terms of the
normalizing pressure. The Cpo values are normalized using the component of velocity
perpendicular to the leading edge, whereas the Cp 3 data use the total freestream velocity.
The relationship is Cp 3 = Cp2 cos?A. Because A = 45° for this experiment, Cp 3 is simply
one-half of Cp . ' o

~ Figures 17-19 give the 3-D pressure coefficient distribution at Re; = 2.0 x 108, 2.4 x 108,
and 2.8 x 108, respectively. The measurements are for the actual —3.4° angle of attack, but
the computed curve reflects the design angle, —3°, for which the liners were constructed. The
results at the three Reynolds numbers are nearly indistinguishable. In each case the actual
pressure is higher than the predicted value at all points upstream of 90% chord. However, .
the pressure gradient—the feature that affects boundary-layer stability—is approximately
what is predicted by MCARF throughout the region of interest for the experiments, 0.30 <
z/c < 0.60. Furthermore, there is not an appreciable pressure difference across the span in
this region. Such a difference would clearly render crossflow velocity predictions inaccurate.
These results are quite similar to those obtained by Reibert et al. (1996) for the NLF wing.
The exceptionally good agreement between those experimental results and the computations
of Haynes & Reed (2000) indicates that the experiment can proceed with these pressure
contours. ' ’
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2.5 Instrumentation

2.5.1 General instrumentation

Because of the sensitive nature of the boundary-layer stability experiments performed at
the Unsteady Wind Tunnel, a special emphasis is placed on automated control of the ex-
periments. Repeatability and consistency demand that a completely automated system
be responsible for controlling the experiment, collecting data, and processing the results.
Moreover, the shear volume of data required to track the evolution of a number of instability
modes throughout their evolution means that the experiment is not possible without full
automation. All of the experiments are controlled by an IBM personal computer with an In-
tel Pentium III running the Linux 2.2 operating system. The computer features a National
Instruments GPIB controller through which all of the experimental hardware including the
tunnel motor is controlled. All of the control and data analysis software is written at the
Unsteady Wind Tunnel using the C and Perl programming languages. ,

Tunnel velocity measurements are performed using a freestream pitot tube. The static
pressure is measured using an MKS 390HA 1000-torr absolute pressure transducer, and
the dynamic pressure is measured with an MKS 398HD 10-torr differential pressure trans-
ducer. Temperature is measured with an Omega model DP116 RTD thermometer. The
detailed freestream and boundary-layer velocity measurements are performed with hotwire
anemometers. The probes used feature 2.5-um-diameter and 5.0-um-diameter tungsten
wires, 1 mm long. The probes are the Dantec 55P15 design with the wire offset 3 mm from
the probe axis to allow good access to the surface. The system is completed with Dan-
tec 55M10 CTA bridges. The fluctuating-velocity signals are conditioned using a Stewart
VBF44 two-channel filter/amplifier. ‘Each channel has low- and high-pass filters that can
vary from 1Hz to 255kHz with a best resolution of 1Hz. Amplification is from —10 to
70dB. The signals from the various devices are acquired using an IOtech ADC488/8SA
analog-to-digital converter with 16-bit resolution and input ranges of £1V to +£10V. The
maximum sampling rate is 100 kHz.

The roughness measurements of the variable-amplitude roughness insert are performed
using a Keyence model LT8120 confocal laser roughness meter. The device provides non-
contact surface-height measurements over a 1-mm range with 0.2-um resolution at a 28-mm
standoff distance. The spot on the surface for which the height is measured is 7 pym.

2.5.2 Hotwire procedures

The instruments used to obtain the mean- and fluctuating-velocity measurements of the next
two chapters are constant-temperature hotwire anemometers. Because careful attention to
hotwire techniques is essential to a successful stability experiment, their use is described
here in detail. Although a variety of more modern systems exists, hotwires provide a number
of features that make them ideal for boundary-layer stability measurements. First, the very
small wire diameters provide the best spatial resolution in the wall-normal direction among
all possible velocity-measurement techniques. This resolution is absolutely necessary when
one considers the boundary-layer scales typically encountered in the experiment, 1-3 mm,
with data desired to within 150 ym of the wall. The length of the sensor is 1mm, but
this is sufficient for the desired measurements because the spanwise length scale is 12 mm.
Second, the even more attractive feature of hotwires is that the output signals can be
high-pass filtered and then amplified so very accurate measurements of small, fluctuating-
velocity components—exactly the feature of interest in stability measurements—can be

‘
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effectively measured. With any other system (e.g., LDV or PIV) no such filtering technique
is available, so measurements of small velocity fluctuations are impossible. There is always
some concern that introduction of a flow-intrusive device such as a hotwire can change
the behavior of a system being studied. This is especially true for stability experiments
where very small influences can become quite significant. For the present experiment this
need not be a concern for several reasons. First, extensive naphthalene flow-visualization
experiments of the previous investigators (in particular Dagenhart & Saric, 1999; Radeztsky
et al., 1999; Reibert et al., 1996) show that hotwire measurements correspond exactly to
behavior indicated. by the flow visualization, for which no intrusive devices exist. Second,
there is excellent correspondence between the experimental results of Reibert et al. (1996)
and the computational results of Haynes & Reed (2000), so there is additional reason to
believe that the boundary-layer behavior is unchanged by the presence of a boundary-
layer hotwire. Finally, in the breakdown region the instability mechanism is driven by an
inviscid Kelvin-Helmholtz-type instability that does not depend on the pressure gradient
(the feature of the flow that would be modified by the presence of the hotwire and sting), -
but instead depends on the shear layer that is established by the stationary crossflow waves
well upstream of the transition location.

Although in large part the fluctuating components are the most interesting features of
these experiments, the correlation of the fluctuating components to the underlying mean
flow is also of interest. This means that a very careful mean-flow calibration procedure is
required that must include an accurate temperature compensation. The calibration pro-
cedure is performed daily to minimize long-term variations in the hotwire response. The
calibration approach is somewhat different from other recent projects at the Unsteady Wind
Tunnel (Reibert, 1996; Carrillo, 1996), so it will be described here in detail.

The basic idea is that the voltage output of the hotwires must be calibrated with re-
spect to the upstream pitot tube and that this calibration must be valid for any tem-
perature encountered during the experiment. To perform the calibration, the wind tunnel
is run through a range of speeds at two temperature levels, and from this the output of
the hotwires is related to the velocity/temperature state measured by the upstream pitot
tube and thermometer. The pitot tube is an excellent velocity-calibration standard for
steady flows because the instruments used to measure the static and dynamic pressures
and the temperature all have good accuracy, precision, and long-term stability. Addition-
ally, because the pressure transducers include independent heaters, they are immune to
environmental temperature variations. -

The calibration approach consists of three elements: a one-time position calibration,
velocity calibration, and temperature compensation. The first, position calibration, is nec-
essary because the entire region of the test section that is accessible by the traverse is
within the zone affected by the pressure field of the wing, so the velocity measured by the
pitot tube is not the velocity measured by the hotwires. To account for this, arbitrary
calibration positions for the hotwires are chosen and the velocities at those points are mea-
sured using a temporary pitot tube. Then these velocities are related to the freestream
velocities measured by the fixed pitot probe. For the current work, the calibration position
is defined as 60% chord, midspan, with full retraction of the sting. Full retraction places
the boundary-layer probe approximately 55mm from the wall and the freestream probe
approximately 180 mm from the wall. This position is selected because it minimizes the
V and W components of velocity and thus offers the best velocity measurement using the
temporary pitot probe. At the calibration position, the pitot probe measurements show
that the velocity ratio between the boundary-layer calibration position and the upstream
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pitot tube is 1.120 4 0.017 and the ratio between the freestream calibration position and
the upstream pitot tube is 1.061 £ 0.017, where the errors are the standard error of the
linear fit from 1-30m/s. The ratios found during the position calibration are applied to all
subsequent hotwire velocity calibrations.

The velocity calibration and temperature compensation are performed in a unified man-
ner and will be described together. The basic equation governing the response of a hotwire
is the empirical heat-transfer relationship known as King’s Law. This law describes the
forced-convection heat transfer from a cylinder perpendicular to a flow. The general form
is written in terms of the Nusselt number and Reynolds number:

Nu= A"+ B'Re}{*. (2.1)

Following Bearman (1971), this general relationship can be written in terms of the applied
voltage, wire resistance, and the transport properties of air. The properties of air vary
with temperature, but Bearman suggests that if one assumes that the correct temperature
at which to evaluate these properties is the wire temperature (which is constant), then the
~ variable properties can be grouped with the other constants: the sensor length and diameter
and the wire resistance. Applying these assumptions yields the following expression:

E? = AT, - T,) + B(T,, — T,)UY™, ’ (2.2)

where F is the voltage across the sensor, T, is the wire temperature, T, is the ambient
temperature, and U is the velocity component perpendicular to the wire. The constants
A, B, and n are to be determined. The exponent 1/n is used instead of 1/2 because
equation (2.1) is empirical and because better results can be obtained by allowing this
value to vary.

To separate the effects of temperature and velocity, a temperature-compensation coeffi-
cient is generated that can correct voltage outputs to a certain standard temperature. To
determine this coefficient, one measures the voltage for a certain velocity at high and low
temperatures. Applying this approach to equation (2.2) gives

B -E}

=77 =

—A - BUY™, (2.3)
where Cr(U) is the temperature-compensation coefficient and the subscripts refer to the
high and low temperatures. The compensated hotwire voltage is then

Elomp = E* + Cr(U)(Teomp — T), (2.4)

‘comp

where the subscript “comp” refers to the temperature-compensated voltage and an arbitrary
compensation temperature. This approach removes the wire temperature (which is not
known) as a parameter, but the resulting coefficient depends on the velocity. In practice
this means that calculating velocity from the anemometer voltage output and ambient
temperature requires an iterative procedure because the velocity U is unknown. Recalling
equation (2.2) and replacing (To, — Tj,) with the constant (T — Tcomp), the velocity is
obtained using the expression

U=(A+BELy) . | (2.5)

The constants A, B, and n in this equation are allowed to differ from those in equation (2.3)
because, as before, King’s Law is not exact, and better results can be obtained by setting
these values independently.
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The actual procedure used to find the constants in equations (2.3) and (2.5) is as follows.
First, the tunnel speed is varied from 1m/s to 27m/s (as measured by the pitot probe)
in increments of 1-3m/s while the pitot velocity, temperature, and hotwire voltages are
recorded at each speed. Then the tunnel is run at high speed (typically 31m/s) until the
temperature has increased by some increment, typically 5°C. Once the higher temperature
is reached, the tunnel velocity is decreased and again the pitot velocity, temperature, and
voltages are recorded. During the ramp-down phase, the velocity targets are changed to
the actual values observed during the ramp-up phase. This eliminates the need for a strict
velocity tolerance for the ramp-up phase (thus reducing calibration time) but increases
the overall calibration quality by reducing the velocity differences of the hot/cold data
pairs. Using the data obtained in these two series of measurements, the temperature-
compensation coefficient is calculated for each of the velocities using equation (2.3). Using
these compensation coefficients, the ramp-down voltages are adjusted to yield the velocity
as a function of temperature-compensated voltage, and these data are fit to equation (2.5).

~ The velocity target adjustment mentioned above is one improvement to the hotwire
techniques employed during this experiment. Two other significant improvements over pre-
vious experiments are made as well. First, the voltages obtained during the ramp-down
phase are modified via linear interpolation to the exact speed measured during the ramp-up
phase. This greatly improves the temperature-compensation coefficient calculation because
errors in E? due to small velocity errors (~ 0.1m/s) can be on the order of those due
to 5°C temperature variations, especially at low speeds. Second, instead of using second-
and fourth-order polynomial fits to model equations (2.3) and (2.5), respectively, the fully
nonlinear models are used. To perform the nonlinear? least-squares fit, the Levenberg-
Marquardt method described by Press et al. (1992) is employed. The principal advantage
is that the nonlinear equations provide a model that describes the heat transfer more accu-
rately than the polynomial basis functions, resulting in reduced deviations of the data from
the computed curve. Bevington (1969) shows that expected variance of data points relative
to a fit is the reduced chi squared, x?/v. This term is the sum of the squared deviations,
normalized by the number of degrees of freedom of the fit (i.e., the number of data points
minus the number of model parameters). The nonlinear models improve the reduced chi
squared relative to the polynomial models not only by reducing the squared deviations but
also by reducing the number of model parameters from eight (five for the calibration and
three for the temperature compensation) to six (three each for the calibration and compen-
sation). The effect of the various improvements on the temperature-compensation curve
is shown in Figures 20 and 21. Figure 20 shows a polynomial and nonlinear fit without
interpolation. Figure 21 shows the nonlinear fit using interpolated data. The reduced chi
squared is 2.6 x 1075 for the polynomial fit without interpolation, 2.1 x 1075 for the nonlin-
ear fit without interpolation, and 1.8 x 10~ for the nonlinear fit with interpolation. Clearly
the nonlinear model with interpolation produces the best result. Beyond simply reducing
experimental uncertainty, the benefits of this approach are that the time and heating level
required each day during calibration are reduced. Sufficiently good results can be obtained
with a relatively small temperature rise.

2In this context, nonlinear refers to the form of the model parameters. For linear fits, the model param-
eters must appear linearly, but the basis functions may be nonlinear.
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2.6 Measurement techniques

2.6.1 Coordinate systems

Prior to describing the measurement techniques that are common to the secondary instabil-
ity and absolute instability experiments, a comment regarding the coordinate systems that
are used to describe the experiment space is needed. This is of particular importance for
anyone who wishes to compare computational results to the experimental measurements.
. The coordinate systems are the streamline-oriented system, the model-oriented system, and
the global- or test-section-oriented system. The streamline-oriented system is most conve-
nient for stability calculations. Here the direction tangent to the local inviscid streamline
is denoted x;, the wall-normal direction is y;, and z; is perpendicular to the other two
directions. The crossflow velocity can be either in the positive or negative z; direction
depending on the local streamline curvature. The velocities in this system are denoted
(ut, vs, wt). The model-oriented system is defined by = perpendicular to the leading edge, Yy
perpendicular to the chord line, and 2 parallel to the leading edge. Here the velocities are
denoted (un,Vn,wn). Finally, the global- or test-section-oriented system is denoted by X
perpendicular to the freestream-flow direction, Y normal to the front wall of the test sec-
tion, and Z vertical (with positive Z down to maintain a right-handed system). The global
velocities are (u,v, w). The various systems are shown in Figures 1 and 22. The coordinate
definitions are consistent with the earlier Unsteady Wind Tunnel crossflow experiments.
The distinction between the model-oriented and global systems will be most pertinent
for the present work because the results will be presented as a mixture of the two. The
orientation of the traverse and sting provides an operational definition of the global co-
ordinate system, so capabilities of the traverse system given in Table 2.1 relate to the
global coordinates. Clearly, the best resolution is in the Y direction. Unfortunately, the
wall-normal direction, y;, which would be the correct direction in which to obtain boundary-
layer velocity-profile measurements, is not aligned with the ¥ direction (although in the
mid-chord regions of the wing they are aligned to within a few degrees). To obtain data in
the y; direction, very small traverse movements in X and Z would have to accompany steps
inY. The X and Z steps would be smaller than the limiting step size of the system. There-
fore, including movement in these directions would actually render the measurements less
accurate than if the small angle between the y; and Y directions is ignored. Computational
results can of course be obtained for any direction with arbitrarily good accuracy, so com-
parisons taken in the Y direction are best. The other direction in which traverse movement
is required during an experiment is perpendicular to the local stationary-disturbance orien-
tation. Measurements that scan along this direction would be used to produce information
on the growth and energy distributions of the various stationary instability modes in their
natural frame. However, because the local orientation varies over the wing and because
moving along lines that are not constant chord lines presents difficulties for hotwire align-
ment, it is impractical for the experimentalist to continually adapt the scanning direction
to the local behavior. Instead, the spanwise z direction is chosen for all such measurements,
regardless of position. Because traverse movements in the span direction are much larger
than the minimum traverse step sizes, there is not a resolution problem in this direction.
With this approach to traverse movements, boundary-layer data are always acquired in the
(Y, 2) plane. .
It is important that the orientation of the boundary-layer hotwire be properly under-
stood in terms of the various sets of coordinates. (For this discussion, the schematic of the
sting in Figure 15 and the coordinate axes in Figures 1 and 22 are helpful.) For each run, the
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sting and boundary-layer hotwire are manually adjusted for the upcoming experiment and
every experiment is restricted to a particular chord location. Prior to any adjustments, the
boundary-layer wire is vertical and the probe support extends in the negative X direction.
First, the boundary-layer probe support is pivoted (about the Z axis) so that it swings
toward the wing in the (X,Y) plane. This rotation is required so that when the sting is
moved in the —Y direction (toward the wing) during the experiment, the boundary-layer
wire itself, and not the sensor’s tines, the probe holder, or the sting, contacts the wing first.
This orientation allows the boundary-layer measurements to be taken as close as possible
to the wing. Next, the probe support is rotated about its axis so that the hotwire sensor -
is parallel to the surface of the wing. The rotation angle of the probe support depends
on the chord location, but not on span. This is why measurements always proceed in the
span direction. Because the hotwire’s orientation changes depending on the measurement
location, it is particularly important that comparisons between computations.and the exper-
iments described here be performed with special attention to the velocity-field projection.
Because of the nature of the experiment (i.e., the hotwire senses only a projection of the
local velocity), it is impossible for the full velocity vector to be reconstructed from single
hotwire measurements. However, because all components of velocity are available from a
computation, a projection of the computational data that mimics the physical transforma-
tion introduced by the hotwire orientation can be performed to yield a valid comparison
between the experiment and computational models. In the experimental results presented in
this document, velocities are referred to as U, Uegge, and u'. These represent the projection
of the mean-flow, boundary-layer-edge, and fluctuating-velocity components, respectively,
onto the hotwire’s orientation.

2.6.2 Boundary-layer velocity profiles

Boundary-layer velocity-profile measurements serve to acquire the projection of the mean-
flow velocity onto the hotwire as the wire is traversed in the Y direction from outside
the boundary layer to very close to the wing. The purpose of the scans in the present
experiment is typically not to find the profiles themselves, but to locate the surface of the
wing very accurately in the traverse’s coordinate system. When performing an experiment,
the position of the traverse can be controlled very precisely in the global frame of reference.
However, in this frame the hotwire sensor’s position relative to the surface is not known.
This is because the hotwire is adjusted manually prior to measurements at each new chord
location, so its position in the absolute traverse frame changes. Moreover, the surface of the
swept-wing model is not in perfect alignment with the traverse-oriented coordinate system,
nor is the surface of the model flat along the chord lines over which the measurements are
obtained. The misalignment of the model and traverse is quite small, less than 1 mm over
the 175-mm Z range of the traverse. Irregularities that are a result of the curing process
of the fiberglass surface and subsequent hand finishing produce variations on the order of
100-200 um along constant chord lines. These irregularities cannot be accounted for in an
overall way and must be taken into account locally. Because of these issues, the position of
the wall is determined using boundary-layer profiles for every series of measurements in the
boundary layer. . ' '
Using boundary-layer profiles to locate the surface utilizes the fact that the velocity at
the surface is zero because of the no-slip condition. Approaching the wing while taking a
series of velocity measurements and fitting these velocity data to a velocity-profile model
produce a surface-position estimate via extrapolation to zero velocity. The operation must
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be performed with the utmost care because the wire must be brought to within 150-200 um
of the surface, and yet if the wire actually contacts the surface, it is destroyed. The 150-pm
limit is a consequence of the fact that hotwire measurements depend on the assumption that
heat transfer from the wire is exclusively via forced convection to the air. Within 150 um
of the wing, heat transfer to the surface becomes significant and hence the measurements
overestimate the true velocity. The profile measurements are stopped before velocity errors
occur due to surface heat transfer.

To address the need for caution while performing the profile measurements without
spending too much time on this setup phase of the experiment, the measurements are started
outside the boundary layer using a fairly large Y step between measurements. As the hotwire
approaches the wing, the step size is progressively decreased so that better resolution is
obtained where the data for the surface estimate are obtained. Once the hotwire has moved
inside the region where U/Uegee < 0.5, the data fitting and extrapolation are performed
after acquiring each new data point. This does not slow the measurement process because
the calculations can be performed much more rapidly than the data can be acquired or the
traverse can be moved. At each point in the inner portion of the boundary layer, the distance
from the hotwire to the surface is calculated by subtracting the current surface estimate from
the traverse coordinate. Monitoring this distance allows the stopping criteria to be distance
based rather than velocity based. In previous Unsteady Wind Tunnel experiments, these
sorts of measurements were terminated once a certain velocity ratio was achieved, typically
U/Ueqge = 0.15-0.20. However, in crossflow boundary layers the mean-flow distortion means
that the distance from the wall at which a certain velocity ratio is reached varies significantly.
The previous measurements reflected a compromise between a ratio that would allow all
the measurements to come close enough to the wall to be effective and a ratio that would
not allow the hotwire to contact the surface. This compromise is avoided here by simply
supplying a distance, not a velocity, criterion, since it is a distance criterion that is truly
important for avoiding surface collisions. Using this method, velocity profiles are obtained
significantly closer to the wing at most span locations with a commensurate improvement
in the surface-position estimates. The ability to achieve good estimates under a variety of
conditions is especially important for the current experiment because much of the work is
performed at chord locations where some portions of the boundary layer are turbulent while
others remain laminar, so the range of velocity-profile types is especially wide.

The velocity-profile model is also different from that used in previous experiments. As
- before, only the points closest to the surface are used, but instead of a linear model a
second-order model is employed: '

U =a(Y - Yp) + b(Y - Yp)?, (2.6)

where a, b, and Yp; the surface position, are to be determined. This choice reflects the
fact that there is a pressure gradient and therefore 82U/8Y? is not zero at the surface.
The second derivative is quite small, but its inclusion does not impose a time penalty on
the experiment because the computation can be performed so rapidly. The more physical
model means that better estimates can be achieved with fewer boundary-layer points and
that points farther from the wing can be utilized. So overall, the use of the higher-order
model actually serves to reduce the time spent performing boundary-layer velocity-profile
measurements.
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2.6.3 Spanwise-line ahd full-field scans

Once the boundary-layer profiles have been used to find accurate surface-position estimates,
the measurements of interest can begin. There are two principal types used: spanwise-line
velocity scans for the absolute instability experiments and full-field velocity scans for the
secondary instability experiments. The line scans proceed along the z direction at constant
chord, z/c, and distance from the surface, Y. The mean flows measured by these scans
are useful for producing stationary-mode amplitudes. These are obtained by taking the
Fourier transform of the velocity data along the span direction. This technique is similar
to that used by Reibert et al. (1996) and Saric et al. (1998). To begin such a scan, the
following parameters are supplied: the starting and ending span locations, the span step
size, the offset in the Y direction at which the measurements are to be performed, the
sampling duration, and the sampling rate. The first task performed is surface-position
estimation using the boundary-layer-profile approach described above. The wall location
is found at the starting, middle, and ending span positions, and the resulting data are fit
to a polynomial that provides a surface estimate at all points along the span. With this
estimate, the hotwire is moved to the position at the starting span location and the correct
surface offset, and the first point is acquired. After this point, the traverse is moved one
step in z and the Y position is adjusted to maintain the correct offset. After a number of
acquisitions, the tunnel parameters are checked and the speed is adjusted if necessary to
account for any heating that would increase the boundary-layer thickness. For the absolute
instability measurements, multiple scans at the same z/c location are desired, so after each
scan in z, the hotwire is returned to the starting position and the operator is given the
option of changing parameters or ending the experiment. '

Whereas the line scans are designed to be performed very rapidly, the full-field scans used
for the secondary instability measurements are designed to provide very detailed velocity
data for all points in the boundary layer. These scans provide mean- and fluctuating-
velocity data on a 2-D grid of points at a particular z/c location. Typically the spacing in
Y is 200-300 pum and the spacing in z is 1.0 or 1.2 mm. This provides 15-20 points in the ¥’
direction from the surface to outside the boundary layer and 12-15 points in the z direction,
enough to span somewhat more than one crossflow wavelength. Full-field scans begin with
a boundary-layer-profile measurement to locate the surface at the starting z position. Once
the surface is located, the hotwire is moved to the starting ¥ position that is specified in the
control program, and the mean and fluctuating data are acquired. Then the wire is moved
out to the next Y location. After the desired points at the first z station are acquired, the
hotwire is moved to the next span location and a new boundary-layer profile is obtained.
The second and subsequent profiles are obtained more quickly than the first because a fairly
good surface-location estimate exists from the previous profile, so these scans need not start
outside the boundary layer. Instead they are begun well inside using the previous point’s
surface-location estimate and boundary-layer-edge velocity as parameters. The process is
repeated until the entire domain is mapped.

2.6.4 Fluctuating-velocity spectra

When the line and full-field scans are performed, both mean-flow and ﬂuctuating-velocity
data are obtained. Because the interest here is in the process by which the instabilities grow
and turbulence appears, the fluctuations are of particular interest. At each measurement
position the mean output of the hotwire anemometer is obtained in the usual way, and .
the fluctuating output is obtained by high-pass filtering (typically at 20 Hz) to remeve the

24




steady component and low-pass filtering to ensure that the subsequent Fourier transform of
the data is not aliased. For acquisition at 20 kHz an 8.0-kHz filter is applied; for acquisition
at 50kHz a 20.0-kHz filter is applied. After filtering, the voltage output is amplified so that
it covers a £5-V range utilizing the full range of the data-acquisition electronics.

Analysis of the mean and fluctuating voltages acquired from the anemometers consists
of first computing the temperature-compensated mean velocity. Next, the gain is removed
from the fluctuating voltages and the mean is added to each fluctuating voltage so that the
correct temperature-compensated velocity can be computed for each. The mean velocity is
then subtracted from each of the instantaneous velocities yielding temperature-compensated
fluctuating-velocity components. These are normalized by the boundary-layer-edge velocity
to yield nondimensional velocity fluctuations.

Rather than the fluctuations themselves, power spectra of the fluctuations provide the
most useful data regarding instability growth. To compute these spectra, the fluctuations
are processed using a fast Fourier transform. A Bartlett window is employed to reduce leak-
age and averaging is used to reduce the variance of the power spectrum. Long samples are
obtained that allow 10-20 averages to be performed while maintaining spectral resolution of
about 10 Hz. The power-spectrum normalization is such that the sum of the discrete power
components is equal to the sum of the discrete velocity fluctuations squared; Parseval’s
theorem is preserved in the discrete sense. To compute the rms amplitude of a particular
frequency band, the components that lie in the band are summed, and the square root of
that sum represents the rms velocity fluctuations for that band.
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Chapter 3

Secondary Instability

The review of the crossflow instability on swept wings presented in Chapter 1 concentrated
on two as_pec'cs:'~ receptivity and the primary instability. Work of the past decade has shown
the primary instability to be subject to nonlinear growth, stationary-wave interactions, and
amplitude saturation. This aspect of the flow is now well understood both experimentally
and computationally. Excellent agreement between these approaches has been demonstrated
by the experiments of Reibert et al. (1996) and the computations of Haynes & Reed (2000)
and Malik et al. (1999). Receptivity is not as well understood, but progress continues, and
the recent computational results of Collis & Lele (1999) have provided a renewed impetus for
experimental work. Despite achievements on these fronts, the actual mechanism responsible
for the breakdown of laminar flow remains unclear.

Most of the important data regarding breakdown have come from observations of transi-
tion location. These observations give only general information and do not yield any specific
clues about breakdown mechanisms. What transition location data have shown is that in
some cases, the transition location is insensitive to roughness amplitude, while for other
conditions, transition location is very sensitive to roughness. Specifically, recall that the
early randomly distributed roughness studies by Radeztsky et al. (1999) showed that for
Re, = 2.7 x 108, a decrease of the roughness amplitude from 0.5 um rms to 0.25 um rms
delayed transition from z/c = 0.61 to z/c = 0.68. Contrast this with the results of Reibert
et al. (1996) for Re, = 2.4 x 10° that show a change in transition location from z/c = 0.49
to only z/c = 0.52 when 12-mm-spaced, 6-um-high artificial roughness is replaced with
12-mm-spaced, 48-pm-high roughness. Although the Radeztsky et al. (1999) experiment
is for naturally occurring roughness and the Reibert et al. (1996) experiment uses artifi-
cial arrays of periodic roughness, the wide variety of transition behavior observed indicates
that transition of crossflow boundary layers can be quite complicated. In order to better
understand—and eventually predict—this behavior, one must be capable of understanding
breakdown. In particular it is important to understand what triggers breakdown at the
specific location at which it is observed.

There are at least two explanations for why the transition behavior is insensitive to
roughness amplitude for a sufficiently large initial condition. The first of these is that
a secondary instability grows in the saturated mean-flow region produced by sufficiently
large amplitude leading-edge roughness, and it is this secondary instability that leads to
transition. There have been a few experimental observations that suggest that this is
the mechanism, and these will be discussed below. Another possibility is that at some
point in the boundary layer, the flow becomes absolutely unstable. This would mean that
disturbances could grow in time to large amplitudes at a fixed spatial location. If this is the
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case, then breakdown would occur at or near the location where the flow becomes absolutely
unstable, and this location would be independent of the initial disturbance amplitude and
~ hence roughness amplitude.

It is the objective of this work to experimentally investigate both of these possibilities.
The focus of the present chapter is the secondary instability. The first section is a review
of the literature relevant to the secondary instability. The second is a description of the
experiments. Results and discussion are presented in the third section. A similar approach
to the possibility of an absolute instability is presented in Chapter 4.

3.1 Literature review

The first crossflow experiment for which a high-frequency disturbance was observed prior
to transition was by Poll (1985). Part of Poll’s experiment consisted of placing a fixed
‘hotwire at the position of the maximum crossflow Reynolds number, z /e = 0.306, on a 63°
swept cylinder. At this location, traveling crossflow waves were observed with a dominant
frequency of 1100 Hz for Re. = 0.9 x 108, Increasing the chord Reynolds number to 1.2 x 106
increased the traveling crossflow frequency to 1500 Hz. In addition to the primary waves
an intermittent signal at 17.5kHz was superposed on the underlying traveling crossflow
waves at the higher Reynolds number. Poll noted that increasing the Reynolds number
beyond 1.2 x 10° resulted in turbulent flow at z/c = 0.306, so the high-frequency signal
appeared only in a narrow range just prior to transition. Poll attributed the existence of
the high-frequency component to intermittent turbulence.

Around the same time as Poll's experiment, work regarding the secondary instability be-
havior of streamwise vortices similar to those that exist on swept wings was being conducted
for several other flows: rotating disk and cone boundary layers and Gértler boundary lay-
ers. Rotating disk and cone flows were the subject of flow-visualization studies by Kohama
(1984, 1985). These geometries produce the same system of co-rotating streamwise vortices
that exist in swept-wing boundary layers. Kohama’s experiments showed that the stream-
wise vortices develop a pattern of secondary vortices around the perimeter of the main
vortex structure just prior to breakdown. Drawing an analogy between the rotating disk
configuration and swept wings, Kohama (1987) predicted that the same type of secondary
instability mechanism would be active in swept-wing boundary layers as well. Further-
more, Kohama et al. (1987) suggested that this secondary instability was respons1ble for
the 17.5-kHz signals observed by Poll (1985).

The Gértler instability on concave-curvature walls has been the subject of very exten-
sive research and was the subject of a review by Saric (1994). This instability is similar
to crossflow in that the primary instability is manifested as stationary streamwise vor-
tices. Just as for crossflow, these vortices produce significant mean-flow distortion and
undergo amplitude saturation due to nonlinearities. The difference between the crossflow
and Gortler instabilities is that Gortler vortices are counter-rotating while crossflow vortices
are co-rotating. In the Gortler literature, the experiment that is most relevant for this dis-
cussion is that of Swearingen & Blackwelder (1987), which (among other tasks) examined
the secondary instability of the primary Gortler vortices using smoke flow visualization and
detailed velocity-fluctuation maps. The flow visualization revealed two secondary instabil-
ity modes: a horseshoe vortex structure around the perimeter of the primary vortices and
a sinuous, transverse oscillation of the primary vortices. Of these, the sinuous oscillation
mode was observed more frequently. This result is in contrast to the Kohama (1984, 1985)
flow-visualization experiments in which the crossflow vortices clearly show a horseshoe-type
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mode. The reason for the difference in the observed secondary instability modes is unclear.
In a later computational work on the secondary instability of Gértler boundary layers, Li &
Malik (1995) were able to determine different growth rates for both of the modes observed
by Swearingen & Blackwelder (1987), and it appears as if the appearance of a particu-
lar mode depends strongly on the parameters of the Gértler boundary layer and on the
receptivity of the individual modes.

The maps of velocity-fluctuation intensity produced by Swearingen & Blackwelder (1987)
are 2-D sections in the spanwise/wall-normal plane. These maps show that the fluctuations
are confined to a stationary multilobed structure. Two lobes exist high in the boundary
layer at maxima of 8U/8z and a single mode exists close to the wall near the center of the
low-momentum upwelling region. The maximum amplitude of the fluctuations was found
to grow exponentially at a rate two to five times more rapidly than the primary instability.
The conclusions are that it is the secondary instability that is responsible for transition,
and that the secondary instability is the result of inflection points of the streamwise flow
when the second derivative is taken in the spanwise, not the wall-normal, direction.

With the mvestlgatlons described above as a background, a high-frequency secondary
instability was specifically investigated as a source of breakdown by Kohama, Saric & Hoos
(1991). This experiment combined hotwire measurements and flow visualizations and was
intended first to determine the location and behavior of the secondary instability mode
relative to breakdown patterns that had been observed in naphthalene flow-visualization
experiments conducted by Dagenhart & Saric (1999), and second to test the conjecture of
Kohama (1987) that swept-wing breakdown is due to a secondary instability of the same
type that affects rotating disk flow. The hotwire experiments consisted of two phases: single-
point velocity-fluctuation spectrum measurements for various Reynolds numbers and single-
line spanwise scans at constant chord and boundary-layer height. The flow-visualization
tests were intended to correlate specific features of the hotwire measurements with surface
shear-stress patterns.

A velocity spectrum result is given for z/c = 0.4, y/d = 0.5 (4 is not explicitly defined),
and Uy, = 25m/s or Re. = 2.66 X 10°. The spectrum (figure 8 in Kohama et al., 1991) shows
traveling crossflow wave activity at 350 Hz and a very broad high-frequency peak centered
near 3kHz. The claim is that the high-frequency activity is a secondary instability caused
by a Rayleigh instability of the inflection points in the wall-normal profiles of the stream-
wise mean flow, U(y). The authors report that increasing the Reynolds number increases
the amplitude of the high-frequency peak until the signal (as determined by the hotwire
time trace) becomes turbulent, although no quantitative data are given characterizing this
development.

Using a characteristic secondary instability frequency of 3.5kHz and a 350-Hz traveling
primary-wave frequency, Kohama et al. (1991) undertake a series of spanwise line scans
meant to demonstrate the spatial correlation between secondary instability and mean-flow
deformation features. The scans are obtained between z/c = 0.40 and 0.45 with the tran-
sition location at z/c = 0.50. The data reveal that both the low- and high-frequency
disturbance amplitudes vary significantly over each wavelength of the stationary structure
and that each mode has an amplitude peak close to the low-momentum upwelling loca-
tion. The authors claim that the instability is located on opposite sides of this region, but
this is difficult to observe in the data that are presented. In any case, the claim is that
the streamwise velocity inflection points near the low-momentum region drive the flow to
turbulence. The mechanism is an energy-production term involving v/, and this activity is
located near the boundary-layer edge at the location of the multiply inflected wall-normal
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velocity profiles.

Although it is clear from the Kohama et al. (1991) experiments that there is a growing
high-frequency mode in the region upstream of transition, a number of concerns can be
raised regarding the authors’ techniques and results. First is the fact that the hotwire ex-
periments consist of single-line scans rather than whole-field scans. Because the mean- and
fluctuating-velocity data are obtained at a single height, there is some ambiguity about the
actual location of the secondary instability behavior relative to the stationary mean-flow
structure. Moreover, single-line scans become less reliable if one considers that the ex-
periment was conducted without a well-controlled primary disturbance state. Experiments
that were conducted subsequent to this work used arrays of micron-sized roughness elements
" near the leading edge. These arrays greatly improved the spanwise uniformity of both the
stationary vortex amplitudes and the transition location. Without the benefit of this tech-
nique, the data obtained by Kohama et al. (1991) in all likelihood cover a wide range of
stability behavior despite having been obtained at a single chord position. Additionally, it
is apparent from a drift of the mean velocity in the span direction (e.g., Kohama et al.,
1991, figure 14) that there is a misalignment between the hotwire traverse and the model.
This may be a result of the chain-driven X axis of the hotwire traverse used for those exper-
iments. The precision with which a particular chord location could be maintained during
an experiment was not nearly as good as can be obtained now. This alignment issue would
not be a problem were the secondary instability mode confined to a single spanwise position
‘within the stationary structure. However, as will be shown in the following chapter, the
dominant secondary instability mode actually extends over a relatively large extent of the
stationary structure, and the spanwise position of the peak fluctuation amplitude depends
on the distance from the wall. Clearly, to obtain reliable secondary instability data, one
must be very careful in controlling the position of the sensor both in terms of distance from
the wall and in terms of span location relative to the underlying vortex.

Perhaps the most serious problem is in the approach to the signal amplitudes at par-
ticular frequencies. For all of the single-line scans, 3.5kHz is intended to represent the
secondary instability behavior. However, a close inspection of the spectrum that is pre-
sented (Kohama et al., 1991, figure 8) reveals not one but two high-frequency peaks that
are superposed. As will be described below, these peaks represent at least two independent
instability modes, and the choice of 3.5kHz is particularly unfortunate because it falls in
the overlap band between the modes. This choice of representative frequency makes the
true locations of the instability modes unclear because it includes contributions from two
spatially distinct modes. Given this, it is apparent why the results are so ambiguous. What
is clearly required is a more detailed experimental examination of the secondary instability
process for the swept-wing configuration. For quite some time this experiment stood as the
only source of secondary instability data for a crossflow boundary layer. The current ex-
periment uses a more careful approach and provides data that will be useful for comparison
with computations. ‘

Following the experimental works of the mid 1980s and early 1990s, the focus shifted
more toward computations. One of the first such investigations was by Fischer & Dallmann
(1991). This work was undertaken as a computational analog to the DLR, swept-plate ex-
periments conducted concurrently by Miiller (1990). The computational approach consisted
of three phases. First, an FSC boundary-layer flow whose parameters (Reynolds number,
sweep angle, and Hartree parameter) matched the experiment parameters at 80% chord
was computed as a basic state. Then the stationary-wave stability characteristics of the
FSC flow were computed. Finally, the most unstable stationary wave was superposed on
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the FSC basic state and stability characteristics of this field were calculated. The mode
shape of the stationary wave was taken from the earlier calculation and the amplitude was
adjusted to match the experiment. Both the primary and secondary stability calculations
were performed using local, temporal stability analysis. .

The primary instability calculations successfully identified the most amplified stationary
wavenumber, Bg = 0.4788, where the nondimensionalizing length is the boundary-layer
scale, § = (vz/US*)1/2, The orientation of this mode was also in good qualitative agreement
with experimental observations, 4.73° from the inviscid streamline. Amplitude saturation
was not captured because these were linear calculations.

The secondary instability calculations were performed at the same chord location using
the saturated stationary-mode amplitude from the experimental measurements, €9 = 7.89%,
where ¢ is the maximum spanwise mean-flow velocity difference for all heights. The
secondary-mode behavior was calculated using Floquet theory. In Fischer & Dallmann’s
approach, the perturbations of the spanwise-periodic mean flow, ¢', are written as ¢’ = €141,
where '

qQ = reél [él(y,z)ei(a1z—w1t)]’ . . (31)

, Ko _ |

Q1(y,z) = e—wﬁoy Z ql1k(y)ezkﬁoz. (3‘2)
::——Kl

(Fischer & Dallmann, 1991, use y to indicate the spanwise coordinate and z to indicate the
wall-normal coordinate. For consistency with the rest of this document, y is the wall-normal
coordinate and z is the spanwise coordinate in equations 3.1 and 3.2.) The variable o is a
detuning parameter used to specify a harmonic, subharmonic, or mixed response.

The secondary instability calculations show that maximum temporal amplification oc-
curred at a = 0.03 for ¢ = 0 (harmonic resonance) and o = 0.08 for ¢ = 0.35 (com-
bination resonance). The dimensional frequencies of these modes are 73 and 145 Hz, re-
spectively. These frequencies are in the range of the most amplified traveling disturbances
obtained by the primary stability analysis. Similarly, the growth rates of the secondary
modes (w; = 0.0063 and 0.0068, respectively) are commensurate with the primary instabil-
ity traveling-wave growth rates (although the growth rates computed using the linear code
are not valid at 80% chord due to amplitude saturation). The conclusion that can be drawn
from these results is that the strong mean-flow distortion produces a spanwise modulation of
the traveling-wave intensity. It seems that this effect should not be considered a secondary
instability, because the amplified modes exist without mean-flow deformation, and because
progressively larger values of the stationary-mode amplitude simply modify the growth rate
and frequency of the existing traveling-wave mode. No stable modes are rendered unstable
to produce entirely new behavior. What is demonstrated, however, is that the stationary,
vortices produce strong spanwise modulation of the traveling waves.

An interesting feature of the computations of Fischer & Dallmann (1991) was that
they did not identify the high-frequency fluctuations observed by Kohama et al. (1991)
in the ASU swept-wing experiment. To resolve this inconsistency, Fischer, Hein & Dall-
mann (1993) impose a stationary disturbance amplitude larger than that observed in the
DLR experiment. They point out that such large amplitudes would clearly be subject to
nonlinear interactions, but those interactions could not be considered. Instead, the focus
was on determining if the high-frequency instability could be produced under the same
linear framework as the previous Fischer & Dallmann (1991) calculations. The new anal-
ysis by Fischer et al. (1993) also uses parameters that match the basic state of the Miiller
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(1990) experiment at 80% chord. For stationary-wave amplitudes exceeding 11%, a high-
frequency mode was observed. At the 11% threshold, a high-frequency mode becomes
unstable at 1500 Hz (F = 4.6 x 107%) and streamwise wavenumber o = 0.556 for o = 0.5
subharmonic resonance. Increasing the stationary-wave amplitude dramatically increased
the growth rate and enlarged the amplified frequency band. In the calculations, the high-
frequency secondary instability growth rate first exceeds the traveling-wave growth rate for
a stationary-wave amplitude between 12% and 14%. By 16% amplitude, the maximum
growth rate w; is 0.027 at 2000 Hz (F = 6.1 x 10~%). This growth rate is nearly three times
that of the low-frequency traveling wave as given by linear theory.

The next computational approach to the secondary instability was presented by Malik
et al. (1994). For their study, the authors use a nonlinear PSE to calculate the primary
stability behavior for a swept Hiemenz flow. As described previously, the nonlinear PSE
approach successfully captures the nonlinear effects including amplitude saturation of the
primary stationary disturbances. The authors use a stationary-wave-only boundary-layer
calculation to provide a basic state for a local, temporal secondary instability calculation.
The calculation is started with a 0.1% amplitude primary wave at R = 186. No high-
frequency modes are unstable at R = 450 where the stationary-wave amplitude is 8%. At
R = 500 where the stationary-wave amplitude is 17%, the secondary instability is detected
with a growth rate about equal to the stationary crossflow disturbance’s growth rate. By
R = 550 where the stationary amplitude is saturated at 22%, the secondary instability
growth rate has reached w; = 0.02 for & = 0.6 at F' = 1.5 x 10~3. Recall that Fischer et al.
(1993) obtained a most amplified value of w; = 0.27 at F = 6.1 x 10~ for 16% amplitude,
and increasing the stationary amplitude increases the frequency of maximum amplification,
so these results are quite similar. The most unstable frequency is approximately one order
of magnitude greater than the most unstable primary traveling wave as reported by Kohama
et al. (1991), and the peak mode amplitude is “on top” of the stationary crossflow vortex
structure. This location corresponds to what will be referred to below by Malik et al. (1996)
as the mode-I1 secondary instability.

In order to obtain a more direct comparison to experimental data, Malik et al. (1996)
used the approach of Malik et al. (1994) to compute the secondary instability behavior of |
an FSC boundary layer with parameters designed to match the conditions found for the
swept-cylinder experiment of Poll (1985) and the swept-wing experiment of Kohama, et al.
(1991), both of which contain secondary instability frequency data. To match the data of
Kohama et al. (1991), a dominant stationary wavelength of 11.5 mm was imposed. Two
secondary instability modes were generated, both with similar growth rates. The lower
frequency of these at 2.1kHz with a streamwise wavelength of 10.6 mm is referred to as
mode I. The higher frequency mode, mode II, is at 3.9kHz with a streamwise wavelength
of 6.2mm. The spanwise modulation of the traveling crossflow wave predicted by Fischer
& Dallmann (1991) was also detected. Malik et al. (1996) claim that the fluctuations
observed by Kohama et al. (1991) are mode-II instabilities because the calculated mode-II
peak at 3.9kHz is the closer of the two peaks to the experimentally quoted value of 3.5 kHz.
However, as discussed above, the spectral data presented by Kohama et al. (1991) likely
include contributions of both the type-I and type-II modes.

The calculations of Malik et al. (1996) reveal that the energy production for the mode-I
instability is dominated by the term — < ugwg > 0U3/902z3 and the mode-II instability is
dominated by — < uguy > 8U, /0y, where the subscript “2” refers to a primary-vortex-
oriented coordinate system. This energy-production behavior suggests that the mode-I
instability is generated primarily by inflection points of the streamwise flow in the spanwise
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direction and the mode-II instability is generated by inflection points in the wall-normal
direction. Although one or the other production mechanism may dominate for a particular
mode, it is too simplistic to assume that only the spanwise or wall-normal inflection points
are responsible for the appearance of a particular mode; with such a highly distorted 3-D
boundary layer, all possible instabilities must be evaluated.

Malik et al. (1996) also compute the secondary instability behavior observed by Poll
(1985). The computations for a stationary-wave-dominated boundary layer predict a 17.2-
kHz mode; Poll’s high-frequency signal occurred at 17.5kHz. Based on the shape of this
disturbance, Malik et al. (1996) claim that this is a type-Il mode. Calculations were also per-
formed for a traveling-wave-dominated boundary layer. These yielded three high-frequency
secondary modes at 15.7, 14.8, and 12.8 kHz.

As part of the ongoing crossflow stability experiment at DLR, Lerche & Bippes (1996)
and Lerche (1996) obtain measurements of the high-frequency secondary instability while
examining the effect of forcing traveling and stationary crossflow waves. Forcing the most
amplified traveling wave is denoted a'(1,1) case; forcing the most amplified stationary wave is
denoted a (0,1) case. For (1,1) and (0,1) forcing, the distortion of the mean flow alone is not
sufficient to render the boundary layer unstable to the secondary instability. The saturation
levels of these cases are 2% and 10%, respectively. However, superposition of the stationary
and traveling waves can produce sufficient distortion to destabilize the secondary instability.
Using phase-locked hotwire measurements, Lerche (1996) observes that the high-frequency
secondary instability appears to be linked to a particular phase range of the traveling
wave. Bippes (1999) states that in these cases, the secondary instability is located near
the instantaneous wall-normal inflection point, 32U/ Oy?, with the larger velocity gradient
0U/8y,! where U now represents the basic state plus the primary instability (stationary and
traveling) disturbances. Bippes claims that the region of secondary instability activity is not
tied to a particular inflection point of the steady flow (either wall-normal or spanwise), but
rather is moving in the span direction with the traveling waves induced by the upstream
forcing. This is likely the case when traveling waves dominate, but in low-disturbance
environments for which stationary waves dominate, the secondary instability does seem to
be located at particular span locations.

The fact that for some configurations the superposition of a certain phase range of the
traveling crossflow mode with the stationary mode is required to trigger the secondary in-
stability may reveal why some earlier observers (e.g., Poll, 1985) believed the high-frequency
hotwire signals to be intermittent turbulence. The result obtained by Lerche (1996) shows
this is not the case. The occurrence of the secondary instability is deterministic if one is
careful to control both the traveling and stationary waves. It appears that to destabilize
the secondary instability, there is a critical amplitude of the streamwise-flow deformation
that is necessary, but this deformation need only occur instantaneously. This result should
not be surprising if one considers that secondary instability frequencies are much higher
than the primary traveling-wave frequencies. What could be considered “instantaneous”
with respect to the slow primary-wave time scale is quite long on the secondary instability
time scale.

The velocity fluctuation data obtained by Lerche (1996) for the case of (0,1)+(1,1)
forcing have the same type of spectral structure as seen by Kohama et al. (1991). The
secondary instability appears as a broad high-frequency peak an order of magnitude higher
(in frequency) than the most amplified mode of the primary instability. For Lerche’s case,

The DLR group uses z as the wall-normal coordinate. y is used here for consistency w1th the definition
used throughout this document.

{
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the secondary instability peak is centered at 2kHz while the most amplified primary wave
is at 82 Hz. Using spectra from an array of points, Lerche constructs maps of the secondary
instability amplitude, filtered from 1.6 to 2.4kHz. For (1,1) forcing, the high-frequency data,
do not show a distinct spanwise structure. For (0,1)+(1,1) forcing, however, the amplitude
~ distribution in (y, z) clearly resembles the type of structure predicted by Malik et al. (1994).
Because only one high-frequency peak appears in the velocity spectrum (figures 2 and 28,
respectively, in Lerche, 1996; Bippes, 1999), it is impossible to classify this as a type-I
or type-II mode using the spectrum. Likewise, the shape of the mode (figures 3 and 29,
respectively, in Lerche, 1996; Bippes, 1999) does not clearly suggest a classification either.
Although the amplitude maximum appears to correspond to the mode-II location high in
the boundary layer, there is significant activity in the mode-I region as well. Clearly there
is a need for additional experiments to fully understand the conditions under which these
modes appear and what techniques can be used to detect and classify them.

A DNS approach to the problem of the stationary-vortex saturation and the ensu-
ing secondary instability was pursued by Hogberg & Henningson (1998). Recall that the
stationary-wave behavior of the primary instability was well described by the DNS of Win-
tergerste & Kleiser (1996) and that these simulations captured the nonlinear interaction of
the low-frequency traveling crossflow wave with the stationary mean-flow structure. This
interaction is what Fischer & Dallmann (1991) refer to as a secondary instability, although it
is only modified, not new, stability behavior. To assess the high-frequency secondary insta-
bility, Hogberg & Henningson (1998) artificially impose a random disturbance at z = 209.5
(nondimensional) where the stationary vortices are saturated. These disturbances enhance
both the low- and high-frequency disturbances downstream, and each frequency band has a
distinct spatial location, with the high-frequency disturbance located in the upper part of
the boundary layer and the low-frequency disturbance located in the lower part. Spectral
analysis of the resulting disturbance field shows that the most amplified high frequency
is at w = 0.957. Another high-frequency peak at approximately twice this frequency is
also evident in the spectrum (figure 12 in Hogberg & Henningson, 1998). This peak likely
corresponds to the type-II mode, although this feature is not described by the authors.
The other significant result is the growth rate of the high-frequency secondary instability
mode relative to the primary instability growth rates. The neutral point of the secondary
instability is z = 270, very far downstream, but the subsequent growth is so rapid that the
secondary mode quickly is observed to produce breakdown in the computations. In fact,
this process is so rapid that the authors suggest that the neutral point of the secondary
instability may provide a good prediction of transition location.

This idea is modified by Malik et al. (1999). With the results of an NPSE simulation of
the ASU swept wing, they compute the local, temporal stability of the stationary crossflow
vortices that are established by the primary instability. Malik et al. (1999) find that better
- transition correlation results can be obtained by actually following the growth of the sec-
ondary instability in an N-factor calculation rather than simply basing a prediction on the
location at which the secondary instability destabilizes.

A swept flat-plate experiment was performed by Kawakami, Kohama & Okutsu (1999)
to investigate secondary instability growth in crossflow boundary layers. The model features
45° sweep and a chord Reynolds number of about 4.9 x 10%. Using a very wide (600 Hz~
2.5kHz) band-pass filter, mode shapes that are similar to those found by Lerche & Bippes
(1996) are identified. From the spectral data presented, the lowest frequency mode’s peak
appears to be between 1.0 and 1.2kHz. This mode becomes unstable between z/c = 0.35
and z/c = 0.40. Just upstream of z/c = 0.50, a mode identified with a 2.5-4.0-kHz filter
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becomes unstable and grows slightly less rapidly than the 600-Hz-2.5-kHz mode. Kawakami
et al. (1999) also use a small speaker embedded in the plate to force the secondary instability.
Using various forcing frequencies, the authors find that the maximum growth rate is about
three times that of the most amplified primary instability and occurs at 1.5 kHz. \

3.2 Experimental approach

What is lacking from the experiments described above is a careful, thorough approach to
the secondary instability that can be used to validate the computational models. There are
numerous spatial and spectral details that have not been explored that could significantly
improve our understanding of the secondary instability, including the beginnings of a predic-
tive understanding into where it will appear and how it causes breakdown. One detail that
is particularly interesting is the issue of what secondary instability modes appear and under
what conditions. Much of the past work has been hindered by rather broad generalizations
of the secondary instability features, the best example of which is the fact that none of the
experiments has distinctly demonstrated either the type-I or type-1I modes predicted by
Malik et al. (1996). It is a goal of the present experiment to provide a detailed catalog of
secondary instability features that is capable of validating computational models.

The secondary instability experiment is quite simple. The approach is to first establish a
spanwise-uniform primary disturbance field and then track the evolution of the fluctuating
velocities associated with all of the instability modes that exist in a particular stationary
structure. Because Reibert et al. (1996) demonstrated that the spanwise uniformity of the
primary instability is quite good when periodic leading-edge roughness is used, periodic
roughness is applied here at z/c = 0.0025, near the crossflow neutral point. Because of
the uniformity, only a single stationary structure need be interrogated for each case and
its behavior is taken to be representative of the behavior of the entire boundary layer.
Following the notation used by Reibert et al. (1996) and Saric et al. (1998), the artificial
roughness arrays will be designated with the notation [k|A], where k is the amplitude of the
roughness in micrometers and ) is the spanwise wavelength in millimeters.

Measurements are taken by performing the full-field scans that were described previously
to obtain the mean and fluctuating velocities at all points in a 2-D grid in the (Y, z) plane
at various chord locations, z/ ¢. The mean-flow data are used to determine the stationary-
mode amplitude growth. This is done by considering the spanwise rms of the stationary
disturbance, rms[(U — Umean)/Uedge]- The amplitude of the stationary-disturbance mode is
represented by the integral of the mode-amplitude curve taken from the surface, Y = 0, to
the edge of the boundary layer. This measure is convenient and robust for experlmental
data both because it includes the contribution of all the data and thus is resistant to
errors at individual points and because there is no ambiguity that results from arbitrary
definitions such as a point in the flow at which to evaluate the amplitude. The fluctuating
data are processed using a fast Fourier transform to yield fluctuation spectra, and a narrow
band-pass filter is applied to these spectra to yield rms velocity-fluctuation amplitudes for
individual modes. To obtain the instability growth rates, an integration over the whole field
is required rather than an amplitude maximum or the amplitude at a particular location.
Without considering changes in the spatial extent of an instability mode, much of the growth
in its energy content could be lost as more of the area participates. As will be apparent
below, the spatial distributions of the modes vary through the boundary layer, so to obtain
an accurate picture of the instability growth rates, the veloc1ty-ﬂuctuat10n amplitudes are
integrated over the entire field to give the total mode amphtudes Because the stationary
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distortion is such a large amplitude, and such strong spanwise periodicity is observed in the
instability modes, simply finding the maximum or the amplitude at a certain point would
not yield correct amplitude growth data. The integration of each mode is carried out over
12mm of span, one stationary crossflow wavelength. The integration in Y is carried out
to the edge of the measurement region because all of the fluctuations go to zero at the top
of the range. For each location, the individual starting points in the span are adjusted to
. better accommodate the location of the modes relative to the stationary structure.

The secondary instability measurements presented here consist of four cases. The first
of these is performed at Re, = 2.4 x 10 with an 18-um-high, 12-mm-spaced roughness
array at z/c = 0.025, [18]12] roughness. This first case serves as a baseline for comparison
with the other runs and will therefore be presented in the greatest detail. Despite the new
swept-wing model, this case will be close enough to the behavior observed previously to be-
considered a‘continuation of the experiments of Reibert et al. (1996), whose baseline was
Re, = 2.4 x 10° with [6|12] roughness. The larger roughness amplitude used here is a single
layer of the smallest rub-on elements that could be obtained for this experiment. The 6-pum
elements used by Reibert et al. can no longer be obtained. Because saturation occurs prior
to breakdown, it is thought that the appearance and growth of the secondary instability
may not be affected by the initial amplitude.

To determine whether the secondary instability is affected by the initial roughness am-
plitude despite saturation by way of an increased amplitude of stationary-mode harmonics,
a second case is performed at Re, = 2.4 x 10°® using three layers of artificial roughness to
give a [54]|12] array. To determine the behavior with weakly supercritical roughness forcing,
the third case is performed with the same [54|12] roughness at Re. = 2.8 x 10. The higher
Reynolds number means that the most amplified stationary crossflow wavelength is some-
what less than 12 mm. Spanwise spectra of the mean flow for this Reynolds number indicate
that the most amplified wave is about 10.2mm. Similarly, the behavior with weakly sub-
critical forcing is obtained from the fourth and last case performed with [54]12] roughness
at Re, = 2.0 x 10%. Here the most amplified stationary wave is about 13.5mm. Finally,
several tests are performed with enhanced freestream acoustic and turbulent fluctuations to
assess whether varying these features can impact the behavior of the secondary instability.

3.3 Results and discussion

3.3.1 Baseline case

The baseline configuration is Re, = 2.4 x 10® with [18]12] roughness at z/c = 0.025. At
this Reynolds number the most amplified stationary crossflow wavelength is about 12mm,
so the roughness spacing forces the most amplified wavelength. The first station considered
is at ©/c = 0.30. This is the first position for which the quantity 6U/dY equals zero some-
where inside the boundary layer, indicating that significant mean-flow distortion exists.2
We first examine the boundary-layer velocity profiles spanning a single wavelength of the
stationary vortex. Figure 23 shows the mean-flow profiles along with the spanwise mean
of the individual profiles. The rms curve is the stationary-disturbance mode shape. For
this location, it appears that although there is some distortion of the mean flow, the flow
is still essentially linear because the rms curve has not yet developed the upper lobe that

%In this chapter and the following, the velocity U will be the mean velocity detected by the boundary-
layer hotwire aligned parallel to the local wing surface as described in Chapter 2. Recall that this is not .
exactly aligned with the local inviscid streamwise direction, but it is within several degrees of that direction.

35




accompanies the advent of nonlinearities. Reibert et al. (1996) explain that the upper lobe
is due to the rollover phenomenon that brings low-momentum fluid into the upper part
of the boundary layer above the high-momentum fluid that is drawn close to the surface.
Using the mean-flow velocity profiles from Figure 23, a velocity contour plot is constructed.
This plot is shown in Figure 24. This layout reveals the structure of the stationary vor-
tex better than the collection of profiles. In this figure the streamwise flow is into the
page and the crossflow velocity is from right to left. The stationary vortex rotates in the
clockwise direction. The dark shades are low-momentum regions and the light shades are
high-momentum regions. The low-momentum upwelling region falls between z = 121 and
123 mm. What is particularly important for understanding the breakdown of the boundary
layer is the distribution of velocity fluctuations within this structure. Figures 25-27 show
the velocity-fluctuation spectra at points on three vertical (constant z) lines. The first of
these, Figure 25, is at z = 119 mm, to the left of the low-momentum upwelling. The spectra
‘here show extremely low fluctuation levels. However, several features are detected. First,
the most amplified disturbances are between 150 and 200 Hz. These fluctuations are the
most amplified traveling crossflow waves. Second, there are fluctuations near 800 Hz. These
may be T-S fluctuations that exist in spite of the favorable pressure gradient, since 800 Hz
corresponds to about F' = 140. All of the fluctuations die off quickly as the distance from
the wall increases. For z = 122mm (Figure 26), the center of the low-momentum upwelling
region, the spectra are about the same as at z = 119 mm, except now the disturbances exist
much farther from the wall where the boundary layer is thicker. The final span location,
z = 125 mm, with spectra shown in Figure 27, is what is referred to as the overturning re-
gion. This is where the low-momentum fluid that has been lifted away from the wall moves
over the high-momentum fluid that is drawn in toward the wall. For this chord station, the
spectra are very similar to those in the upwelling region of the previous figure.

" The best means of understanding the stability behavior in the distorted boundary layer
is to plot the spatial distribution of the amplitudes of the various fluctuating modes and
compare these to the underlying structure of the mean flow at the same location. To do
this, all of the velocity-fluctuation spectra for a particular chord location are integrated over
the frequency band of interest, and the result is plotted against Y and z in a manner similar
to the mean-flow contours. In the velocity-fluctuation amplitude-distribution figures, the
intensity is given as the rms velocity fluctuation in the frequency band, the square root
of the integral of the spectrum. Figure 28 is the rms velocity-fluctuation distribution for
the frequency band centered at 200 Hz, the frequency band corresponding to the traveling
crossflow mode. Before the boundary layer undergoes mean-flow modification because of the
stationary crossflow vortices, the traveling crossflow waves are uniform in span. Here, the
mean-flow modification has produced some deformation of the traveling crossflow amplitude
distribution. This is the effect termed a secondary instability by Fischer & Dallmann (1991),
who predicted that just such a modification should exist. As was argued above, this should
not be considered an absolute instability because it is only a modification of existing unstable
modes and not a destabilization of a new mode.

It is not obvious that this experiment should be capable of detecting the traveling
crossflow fluctuations as well as we see them here. The primary disturbance consists of
streamwise vorticity and the velocity fluctuations associated with this are v’, w’. The hotwire
is situated to detect v/, v’ fluctuations. Furthermore, because the streamwise U component is
large relative to the fluctuations, the hotwire is more capable of detecting the v’ fluctuations
that are aligned with U than the v’ fluctuations that simply change the velocity vector’s
direction, but don’t significantly change its amplitude. The fluctuating velocity detected by
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the hotwire is [(U + /)2 + v’Q]l/ 2 _ U, which is approximately equal to u’ for v/,v' < U.

What this does not consider, however, is the fact that the inviscid streamlines and crossflow
vortices are inclined relative to the X axis. This means that the hotwire actually detects a
component of the w’ fluctuations that appears with mean velocity, U, in the simple analysis
presented above. This arrangement is shown schematically in Figure 29.

Moving to z/c = 0.35, the earliest stage of nonlinear evolution is apparent in the mean
flow. An upper node of the stationary-disturbance mode shape can be seen in Figure 30.
The composite velocity contour plot (Figure 31) shows that overturning is under way here.
Comparing the velocity-fluctuation spectra at z = 105, 108, and 111 mm (Figures 32-34)
to those obtained at z/c = 0.30 shows that the traveling crossflow mode amplitude has
increased while the higher-frequency fluctuations near 800 Hz have decreased somewhat.
Overall, however, the spectra are quite similar to those upstream, and none shows evidence
of a high-frequency secondary instability. What is not clear from the spectra is the extent
to which the 200-Hz disturbances are being redistributed within the structure. Figure 35
shows that just like the mean velocity, the fluctuations are acted on by the clockwise v/, w'
disturbance of the stationary crossflow mode. We observe very strong spanwise modulation
of what was originally a spanwise-uniform feature. In fact, it may not be appropriate to
refer to these fluctuations as traveling crossflow waves once the modulation is so severe.
However, the experimental evidence shows that the origin of this mode is consistent with
what is predicted for traveling waves by linear theory, and there is a continuous progression
“from that state to what is seen here.

At x/c = 0.40, the stationary-mode amplitude is increased substantially as can be seen
in the velocity profiles and contours of Figures 36 and 37. Here, spectra at all three of the
typical span locations show evidence of a high-frequency mode. At z = 91 mm (Figure 38),
3mm to the left of the center of the upwelling region, there is a broad band of fluctuations
from about 1kHz to about 5kHz, with a maximum amplitude near 3.0kHz. At z = 91 mm,
this feature only appears in the spectra obtained at ¥ = 0.8 mm, close to the wall; at
Y = 1.6 mm, the feature disappears. At the center of the upwelling region, z = 94mm
(Figure 39), the same band is active, now at ¥ = 2.4mm. In the overturning location,
z = 97mm (Figure 40), the same band can just be detected high in the boundary layer. At
all of these stations, the 200-Hz fluctuations (Figure 41) are also strongly amplified.

The amplitude distribution of the 3.0-kHz fluctuations at z/c = 0.40 is shown in Fig-
ure 42. These fluctuations meet the secondary instability criteria because there is not a
region that would be predicted to be unstable without mean-flow modification. These fluc-
tuations lie along the shear layer to the right of the upwelling region and extend over much
of the span of the stationary structure. This location is not what was reported by Kohama
et al. (1991) but instead agrees with the computations of Malik et al. (1999) and measure-
ments on swept plates by Lerche (1996) and Kawakami et al. (1999). The location of the
3.0-kHz mode relative to the mean-flow distribution indicates that its production is likely
dominated by the spanwise gradient of the streamwise velocity, 8U/8z. This is what Malik
et al. (1996) termed a mode-I secondary instability. The shape and extent of this mode
reinforce the need for full-field as opposed to single-line scans to adequately understand
the secondary instability. Obviously, the choice of wall offset Y for a single-line scan is
tremendously important for the relationship of the mode-I amplitude distribution to the
underlying mean flow. '

Because the secondary instability is situated where it is, aligned on the high-velocity
shear layer along the right edge of the low-momentum upwelling, it would appear that
this is a Kelvin—Helmholtz-type instability. As such it will be manifested as vortex lines
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that lie in the (Y,2) plane and convect in the stream direction. If this is the case, a
visualization of the secondary instability would consist of rolls that wrap along the left
side of and extend above the stationary structure. This is exactly what is observed in the
rotating disk flow-visualization experiments of Kohama (1984). In the secondary instability
phase of the Gortler experiment carried out by Swearingen & Blackwelder (1987), two -
types of secondary instability modes were observed. One is termed a horseshoe mode
and resembles the crossflow rolls observed by Kohama (1984). The other mode is termed
a sinuous mode and consists of an oscillation of the structure in the span direction. The
difference between the crossflow and Gértler boundary layers is the fact that while crossflow
boundary layers appear to have only a single secondary instability location, the Gértler
structure has symmetric instability lobes that can operate either in or out of phase to
produce one or the other type of secondary instability. Because there is no such symmetry
in crossflow boundary layers, only the horseshoe-type mode can exist. This is exactly what
is observed by Kohama (1984) and is what is thought to exist here.

The distribution of 200-Hz fluctuations continues to diverge from what is expected for
traveling crossflow waves. Now there is almost no significant activity in this band in the
high-velocity regions that are being drawn into the surface by the stationary vortex, and the
fluctuations that were once distributed along the surface as the traveling crossflow waves
are being lifted by the vortex in the low-momentum upwelling region. It is very surprising
that a mode whose origin is in spanwise-traveling waves could reach a stationary state that
is so highly modulated in span. The behavior of this mode is certainly worthy of much more
detailed attention. However, to do it justice would require a different technique than is used
here. Because it is (or at least starts as) a v’,w’ disturbance, if one wishes to understand
its evolution unambiguously, a multi-element hotwire probe should be used to obtain the
projection of the velocity field onto the plane parallel to the wing instead of simply the
projection onto the single-element wire used here. With the data that are available now,
nothing more conclusive can be said about this mode. This does not prevent us from moving
forward with the high-frequency mode that appears here at z/c = 0.40. Because this mode
lies along a streamwise shear layer, the disturbances are u/,w’ (or «/,v’, depending on the
particular location being considered), so the single hotwire is sufficient to obtain good data
on this mode. A )

Moving downstream, the next position considered is z/c = 0.41. The mean-flow con-
tours, velocity-fluctuation spectra, and the rms velocity distributions are nearly identical to
those at z/c = 0.40, except of course for growth of the fluctuation amplitudes. Figures 43—
47 are the mean-flow profiles; mean-flow contours; and fluctuation spectra at z = 87, 90,
and 93 mm, respectively. .

At z/c = 0.42, the mean flow (profiles and contours are given in Figures 48 and 49)
is again about the same, but here a subtle difference in some of the fluctuation spectra
(Figures 50-52) exists. Close examination of the ¥ = 0.80 mm spectrum at z = 84mm
(Figure 50) and the Y = 1.60mm spectrum at z = 87mm (Figure 51) reveals that a
second peak in the fluctuation spectra exists at about 1.8kHz. It is easy to miss the
existence of this peak because of the proximity of the mode-I peak at 3.0kHz. Plotting the
rms velocity from 1.7-1.9kHz (Figure 53) reveals an amplitude distribution that is almost
identical to that seen previously for the mode-I instability. It is easy to imagine that much
of this similarity is due to spillover from the 3.0-kHz mode. Consider, for instance, the
Y = 2.4mm spectrum at z = 87 mm (the highest amplitude secondary instability peak in
Figure 51). That feature of the spectrum is quite strong at 1.8kHz, and yet it appears to
have only a single mode centered near 3 kHz. If there is 1.8-kHz activity here it is swamped
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by the higher amplitude mode. Notwithstanding this, comparing the 1.8-kHz distribution
in Figure 53 to the distribution of 3.0-kHz fluctuations in Figure 54 reveals that the lower
frequency distribution extends much closer to the wall on the left side of the low-momentum
upvs}elling region. Also, the mode extends well beyond the span of the figure to the left,
just as the tail of the 1.8-kHz fluctuations from the structure to the right side of the figure
(z > 94) extends into the span range being considered. Contrast this with the 3.0-kHz
mode that is much more compact. Unfortunately, the spatial and spectral proximity of
these two modes makes it impossible to do more than speculate about the details of the
-lower amplitude 1.8-kHz mode. One could imagine that if the two could be separated,
perhaps using phase information if it were available, then the 1.8-kHz mode would appear
only close to the wall and all of the activity higher in the boundary layer would be simply
spillover from the 3.0-kHz mode. .

Moving to z/c = 0.43, the mean-flow profiles and contours are unchanged (Figures 55
and 56). Individual spectra at z = 81 and 84 mm in Figures 57 and 58, respectively, again
show evidence of a 1.8-kHz mode, but here the spatial distribution is even less distinct than
in the previous case. The spectra at z = 87mm in Figure 59 show no sign of this mode,
similar to Figure 52, the equivalent position in the stationary structure at z/c = 0.42, the
previous chord location.

At the next location, z/c = 0.44, the mean-flow behavior remains the same as before
(see Figures 60 and 61). The fluctuation spectra show very large secondary instability
amplitudes both at the mode-I frequency, 3.0kHz, and now for the first time at a higher
frequency, 6.1kHz. To the left of the upwelling region at z = 78 mm, the spectra (Figure 62)
only show a hint of this higher frequency mode and the position closest to the wall retains
some activity that appears to be associated with the possible 1.8-kHz structure. However,

- at z = 81 mm, the center of the upwelling region (Figure 63), the growth of the new 6.1-kHz
mode is quite dramatic. In the overturning region, the spectra for 2 = 84 mm (Figure 64)
do not show evidence of the highest frequency mode and show relatively low amplitudes
for the 3.0-kHz mode. It is interesting to note that the overturning location, z = 84 mm,
is exactly the location for which a secondary instability might be expected based solely on
the U(Y') profiles. These profiles include multiple inflection points in regions of high shear
stress and high velocity at the top of the vortex structure. However, at this location there
is almost no secondary instability activity. ‘The spatial distributions of the 3.0-kHz and
6.1-kHz modes are given in Figures 65 and 66. These show that the two modes are spatially
coincident, so it is only because of their frequency separation that they can be recognized
as distinct modes.

Moving to z/c = 0.45, the situation is very similar to z/c = 0.44, except now there is
some indication that the fine structure of the mean flow cannot persist given the increased
fluctuation levels. The individual profiles shown in Figure 67 from which the contour map is
assembled cannot be distinguished from those of the previous station. However, the mean-
flow contours in Figure 68 actually show a break and a separate zone of low-momentum fluid
high in the boundary layer. This may only be an artifact of the grid on which the data are
acquired, but it is certainly a harbinger of breakdown. The fluctuation spectra for z = 76,
79, and 82mm in Figures 69-71 show that the 3.0-kHz and 6.1-kHz modes continue to
grow rapidly, now with points at all three of these span locations participating. The spatial
distribution of the 6.1-kHz peak (Figure 72) has matured significantly since z/c = 0.44;
it now lies clearly along the shear layer to the left of the low-momentum upwelling zone,
whereas before it was'a rather ambiguous blob.

Finally at z/c = 0.46, breakdown occurs. The mean-flow profiles shown in F igure 73

39




are not markedly different, but the contour map constructed from them (Figure 74) shows
that much of the fine structure of the mean flow has been eliminated. The low-momentum
upwelling no longer has a narrow apex; instead this region is wider and flatter. The region
of low-momentum fluid high in the boundary layer still extends over nearly the whole
stationary structure’s length, but now the lowest velocities in this feature, U < 0.7 Uggge,
are gone. What is most important in Figure 74, however, is the velocity gradient near the
wall to the left of the low-momentum upwelling. Notice that this region looks quite different
from previous cases; in particular the contour lines are now very close together, indicating
that the wall shear here is quite high.

What are responsible for these changes in the mean flow are of course the much-increased
velocity fluctuations brought on by breakdown to turbulence. At z = 72 mm, the high wall-
shear region to the left of the low-momentum upwelling, the fluctuation spectra in Figure 75
show a flat, very high amplitude, fully turbulent spectrum at ¥ = 0.8 mm, the position in
the figure closest to the wall. The spectra higher in the boundary layer are nearly fully
turbulent, but in these curves some evidence of the 3.0-kHz mode remains. The situation is

‘much the same for z = 75mm (Figure 76), the low-momentum upwelling position, except
the spectrum of the point closest to the wall shows a somewhat lower fluctuation level,
especially beyond 2kHz. This position is below the zone affected by the secondary insta-
bilities at the upstream stations and below the traveling crossflow fluctuations that persist
throughout the preceding development, just as they appeared in Figure 41. The spectra for
z = 78 mm that are shown in Figure 77 are not turbulent; they maintain distinct spectral
features associated with traveling crossflow fluctuations near 200 Hz and the 3.0-kHz mode-I
secondary instability despite their very high amplitude. _

In Figure 78 the distribution of the total velocity-fluctuation rms amplitude is plotted.
It is evident from this figure that the overall energy distribution is exactly coincident with
the 3.0-kHz and 6.1-kHz modes. Their rapid growth just prior to breakdown and the spatial
location of the subsequent turbulent fluctuation maximum make it quite obvious that the
secondary instability is the route to breakdown for this flow. Notice that the total rms
velocity-fluctuation distribution shows somewhat more activity close to the wall between
z = 71 and 73mm than do the 3.0-kHz distributions upstream. This has an important
consequence in that it helps to explain the high wall shear in this region; the turbulent
fluctuations promote enhanced mixing of the high-momentum fluid with the low-momentum
fluid near the wall, resulting in increased shear. As a result, the behavior of the turbulent
wedges that indicate breakdown in naphthalene flow-visualization experiments is now clear.
The upstream tips of the wedges appear at the points where the mode-I instability makes
its closest approach to the wall on the left side of the low-momentum upwelling location.
The reason the wedges appear as they do, with the breakdown tip on the left edge of the
low-shear part of the naphthalene streaks, has been a subject of some interest since the
first systematic swept-wing flow-visualization experiments were undertaken by Dagenhart
(1992). Understanding the location and amplitude of boundary-layer features relative to
the associated wall shear in this manner is essential if one is to conduct an experiment using

only wall measurements with hot films or some other technique as would be required in a

flight experiment. In particular, consider the quantitative transition-detection technique
developed by Chapman et al. (1998) using hot films. In this approach the hot films are
aligned in an array along a particular stationary structure and must be positioned within
the structure to detect the secondary instability fluctuations and the high shear of the
turbulent wedge.- With the data presented here it is now possible to correctly place the
sensors to achieve optimum performance with this technique.
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The appearance of the total fluctuation amplitude distribution raises the question: Why
do these features extend so close to the surface and cause the wall-shear behavior that is
observed? Comparing Figure 78 to the upstream 3.0-kHz and 6.1-kHz distributions shows
that while the maxima are located in the same region of the stationary structure, the total
fluctuation contours come much closer to the wing than the individual mode contours that
we have been tracking. There are at least two potential explanations. The first is that the
1.8-kHz mode that was detected at z/c = 0.42 and z/c = 0.43 persists below an amplitude
level that can be detected, but that it is able to enhance the fluctuation levels in this zone.
The other possibility is that the small counter-rotating stationary vortex that was predicted
by the computations of Malik et al. (1994) and the DNS study of Wintergerste & Kleiser
(1996) is of sufficiently high amplitude to either participate in breakdown or transport
fluctuation energy closer to the wall in this region. Neither of these mechanisms is directly
supported by the present data, but there is some means by which enhanced fluctuations
are generated near the surface, and these two scenarios are both candidates based on the
upstream measurements and results from the literature.

Downstream of the breakdown location we can expect the stationary structure to dissolve
quickly in the face of the enhanced fluctuation levels. This is evident at z/c = 0.47 in the
stationary profile rms curve in Figure 79 where both the upper node and the region below the
lower node are already significantly reduced. This is reflected in the contours in Figure 80
that show the continuing breakup of the low-momentum zone high in the boundary layer
and the extension of the high wall-shear zone. These trends continue at z/c¢ = 0.48, the last
measurement station of the baseline case. Here the stationary mode shown in Figure 81
continues to dissolve as the high wall-shear zone that can be observed in the contour plot
(Figure 82) extends. For this final location, spectra at four span locations are presented.
At the three span locations we have been tracking 3mm to the left of, centered on, and
3mm to the right of the low-momentum upwelling region (Figures 83-85), the spectra are
all nearly fully turbulent, with amplitudes decreasing away from the wall. For this last
chord station, spectra from z = 74mm, 6 mm to the right of the low-momentum upwelling

“center, are also included (Figure 86). These spectra show that although the parts of the

stationary structure that contain the 3.0-kHz and 6.1-kHz fluctuations upstream are now
turbulent, parts of the structure still exhibit relatively low fluctuation levels.

The growth of the instabilities is tracked by integrating the fluctuation levels over entire
(Y, 2) sections as described above. The reason for the whole-field integration should now be
evident from the redistribution of energy throughout transition for both the 6.1-kHz fluc-
tuations seen in Figure 66 and Figure 72 and for the 200-Hz fluctuations in Figures 28, 35,
and 41. The rms fluctuation growth curves are shown in Figure 87. Each curve is normalized
using the amplitude of its first occurrence. In this figure we see that the stationary distur-
bance grows between z/c = 0.30 and z/c = 0.35 and between z/c = 0.35 and z/c = 0.40.
Downstream of z/c = 0.40, the stationary disturbance is saturated. Throughout the chord
range the traveling crossflow amplitude is slowly growing. Its development past z/c = 0.45
is not plotted because once the flow becomes turbulent, the spectral band that defines this.
mode, 100-300 Hz, contains significant fluctuation levels that are clearly not associated with
the same mode. The most important and dramatic features of this plot are the 3.0-kHz- and
6.1-kHz-mode amplitude curves. These modes appear in quick succession at z/c = 0.40 and
z/c = 0.43, respectively. The 3.0-kHz mode does not amplify rapidly at first, but starting -
at z/c = 0.42 it undergoes very rapid exponential growth until breakdown at z/c = 0.46. It
is rather curious that the 3.0-kHz mode exists for 2% chord before undergoing rapid growth.
One might think from this behavior that the 2.9-3.1-kHz band includes two distinct modes:
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a weaker early mode and the strongly amplified mode that becomes unstable at z/c = 0.42.
This may indeed be the case, but if so it would be difficult or impossible to detect experi-
mentally because the 3.0-kHz fluctuations are always observed at exactly the same spatial
location, regardless of the chord location. The 6.1-kHz mode is first detected at x/c = 0.43
and it undergoes even more rapid growth than the 3.0-kHz mode. What is interesting about
the growth rates of the two high-frequency modes is that the 6.1-kHz mode is not twice
that of the 3.0-kHz mode, meaning that the 6.1-kHz mode is not simply a harmonic of the
3.0-kHz mode, despite the fact that they are spatially coincident. Rather, it appears that
the 3.0-kHz and 6.1-kHz modes are distinct.

3.3.2 Increased roughness amplitude case

With a fairly complete description of the secondary instability for the baseline case of
Re. = 2.4 x 108 with [18|12] roughness, we wish to understand the effect of the roughness-
array amplitude on the appearance of the secondary instability. The results of Reibert et al.
(1996) show that if the stationary crossflow waves saturate, then the transition location is
nearly independent of the roughness amplitude. Those authors observed that changing from
[6/12] to [48|12] roughness moved the transition location from z/c = 0.49 to only z/c = 0.52
at Re. = 2.4 x 10%. This result suggests that because the stationary crossflow disturbances
were saturated by x/c = 0.40 in the previous section, an increase in the roughness amplitude
will not change the stationary-mode amplitude in the transition region. Essentially, one
could expect that if the gross transition behavior is unchanged, the secondary instability is
unchanged as well.

One aspect of the higher amplitude roughness case that will be different from the baseline
is the amplitude of the stationary-mode harmonics. Nonlinearities in the development of
the mean-flow field are not just responsible for saturation, they also generate harmonics
of the stationary mode. So if 12-mm input waves are applied, 12-mm waves are observed
to dominate the flow field, but sufficiently far downstream, 6-mm, 4-mm, etc. waves are
observed to grow as well, and these grow even after the principal wave has saturated.

For this second case with [54]12] roughness, the boundary-layer velocity profiles will not
be shown; instead only the contour plots will give mean-flow information because the con-
- tours are better at describing the mean-flow modification. The stationary-mode amplitudes
are calculated in the same manner as before using the integration of the rms stationary
profile. The stationary boundary-layer structure that is followed for the [54|12] case sat-
urates somewhat earlier than the structure that is followed for the [18]12] case, so the
measurements begin at z/c = 0.25. Here the mean flow shown in Figure 88 is distorted
but has not yet developed a distinct overturning feature. Spectra at z = 118.6, 122.2, and
125.8 mm (Figures 89-91) are very similar to what was seen in the upstream stations for
the previous case. They indicate low disturbance amplitudes with activity confined to the
traveling crossflow frequency band. The stationary structure has developed the overlap fea-
ture at z/c = 0.30 (Figure 92), and the spectra show much higher amplitude fluctuations
near 200 Hz (Figures 93-95). The spatial distribution of the 200-Hz fluctuations shown in
Figure 96 is very similar to the type of distribution seen earlier.

At z/c = 0.33, there is still no secondary instability activity in the spectra, so the mean
flow and spectra are not shown. At z/c = 0.34, there is the first indication of secondary
instability activity near 3.0 kHz. The mean-flow velocity contours for this location are shown
in Figure 97 and representative spectra are given in Figures 98-100. The distributions of
200-Hz and 3.0-kHz fluctuations are shown in Figures 101 and 102, respectively. Despite
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the fact that the 3-kHz fluctuations are very low amplitude and can just be detected above
the background, they are still clearly the same mode that was observed in the baseline case.
It appears that this is a type-I mode that corresponds to the calculations performed by
Malik et al. (1996). Both the 200-Hz and 3.0-kHz modes continue to develop as shown here
for the next several chord stations.

By z/c = 0.37, there is evidence of 6.1-kHz activity. By z/c = 0.38, this activity has
grown to the extent that it can be extracted into a distinct mode shape. The mean flow
at z/c = 0.38 is shown in Figure 103 and the representative spectra at z = 91, 94, and
97mm are shown in Figures 104-106. What is striking about these spectra, especially the
two at the low-momentum upwelling location and to its right (Figures 105 and 106), is
that the low-frequency fluctuations appear to be much more important than they did in the
previous [18]12] roughness experiment. The peak of the low-frequency spectrum is not above
what was observed before, but the band of amplified frequencies extends to beyond 1kHz,
whereas before, these fluctuations did not extend past 400 Hz. So perhaps one of the most
important features of the increased roughness amplitude is not the appearance of higher
amplitude harmonics of the dominant stationary wave, but is instead the enhanced low-
frequency velocity fluctuations. The distribution of 200-Hz fluctuations given in Figure 107
remains much the same as it was both in the previous figures and for [18}12] roughness, but
here there is the additional feature of a local amplitude maximum to the left of the low-
momentum upwelling location, situated close to the surface at ¥ = 0.5mm. It is possible
that this feature is a consequence of the small stationary counter-rotating vortex whose
existence was predicted by both PSE and DNS codes. That vortex may be drawing fluid
that was lifted away from the surface by the main crossflow vortex back toward the wing.

The 3.0-kHz distribution at z/c = 0.38 (Figure 108) is about the same as the other
3-kHz distribution figures for this and the previous configurations. However, the 6.1-kHz
distribution (Figure 109) is quite different from what is observed in the baseline [18]12]
- roughness experiment. Now, the peak amplitude is not located at the same point on the
high-velocity shear layer as the 3.0-kHz mode. Instead, the 6.1-kHz fluctuations are located
on the top of the overturning region, the region with strong wall-normal gradients of the
streamwise velocity and weak spanwise gradients of the streamwise velocity. This mode is
different from what was observed for [18|12] roughness and instead appears to be what Malik
et al. (1996) term a type-II secondary instability. It is still a Kelvin—Helmholtz instability,
but now the energy production is dominated by the velocity gradient in Y and the o/, v’
fluctuation terms, whereas the mode-I instability is driven primarily by the velocity gradient
" in z and the v/, w’ fluctuations. Figure 109 shows that there is 6.1-kHz activity in the same
part of the structure where the 3.0-kHz activity is greatest, so it appears that there are two
separate modes at 6.1 kHz that are simultaneously active.

For z/c = 0.39, the mean-flow contour is given in Figure 110 and the representative
spectra are shown in Figures 111-113. The fluctuation amplitude distributions for the 200-
Hz, 3.0-kHz, and 6.1-kHz bands are given in Figures 114, 115, and 116, respectively. All
of these modes retain their earlier character. The 6.1-kHz type-II mode is still not a high
enough amplitude to render the background fluctuation level unimportant, so an energy
integral would include a large contribution from the regions outside the mode. . This is
one drawback of the whole-field integration technique; it cannot be used to pinpoint very
low amplitude modes. The mode-II zone continues to droop into the mode-I region of the
figure. It is impossible to determine whether we are detecting a single mode or whether
there continue to be two separate mechanisms that overlap both spatially and spectrally.

At z/c = 0.40, breakdown occurs. The mean-flow contours in Figure 117 indicate that
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the mean-flow velocity has already lost much of its structure high in the boundary layer and
the shear is increased to the left of the low-momentum upwelling as it was in the baseline
case. The velocity-fluctuation spectra given in Figures 118-120 are not as dramatic as
the spectra that indicated breakdown for the baseline [18]|12] case, but the mode-I and the
mode-II secondary instabilities have actually decreased, and lacking a more clear indication,
" we take this as the breakdown criteria in this case. What is new here is that following
breakdown, the total rms velocity fluctuations that are shown in Figure 121 are coincident
with the location of 200-Hz activity and not with either of the secondary instability modes.
This suggests that although the secondary instability growth is obviously a major factor
in triggering breakdown, for the increased roughness amplitude case, we cannot ignore the
contribution of the lower frequency fluctuations.

The growth rates of the stationary crossflow vortex, the 200-Hz mode, and the 3.0-kHz
mode are shown in Figure 122. The 6.1-kHz mode is not shown both because it never appears
as a distinct mode and also because its amplitude is so low that the amplitude integration
would include a significant contribution from the background. The 200-Hz mode grows
throughout the entire boundary layer, with a growth rate that does not change nearly as
much as one might expect given the dramatic variations that occur in the underlying mean
flow. The 3.0-kHz mode-I instability has a lower growth rate here than was observed in the
baseline case. It is not known whether this is a consequence of the growth being observed
upstream of the baseline case or whether it is a purely local effect that only depends on
the details of the stationary structure. The overall growth from where the mode can be
detected until breakdown is much lower than for the baseline case, but here we believe that
the lower frequency fluctuations are jointly responsible for breakdown, and this would mean
that the secondary instability need not reach as high an amplitude before transition occurs.

The stationary-mode growth curve displays a notched appearance, that is, growth and
saturation followed by a slight decrease in amplitude, then slightly more growth before
breakdown. Although it is more obvious here, the same phenomenon occurs for the baseline
case (Figure 87). This behavior was observed by Reibert et al. (1996), who performed similar
mean-flow measurements over many wavelengths on another model. It would appear that
this is a real effect and cannot be dismissed as experimental error. In Reibert et al’s
experiments, this phenomenon was observed for [18|12] and [48|12] roughness but not for
[6]12] roughness. Here we observe the same phenomenon; higher-amplitude leading-edge
roughness leads to a more pronounced two-stage saturation. Although the mechanism is
not clear, the effect of roughness amplitude suggests that larger-amplitude harmonics of the
dominant stationary wave, increased low-frequency fluctuation amplitudes, or a combination
of both of these is responsible. One possible scenario is that downstream of saturation
of the dominant wave, its harmonics continue to grow, but at too low an amplitude to
be detected immediately. Saturation of the largest-amplitude harmonic gives the second
saturation plateau observed in the overall mode amplitude curve. The effect would clearly
be more pronounced for large roughness amplitudes that provide earlier saturation and
higher-amplitude harmonics. '

3.3.3 Decreased Reynolds number case

We now move to the case of [48|12] roughness with Re; = 2.0 x 10°. This will demonstrate
what effect slightly subcritical forcing has on the secondary instability and breakdown,
because the lower Reynolds number means that the most amplified stationary wavelength
is shorter than 12mm. The lower Reynolds number will produce transition at a larger
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value of z/c, but what is of primary interest is the identification of the secondary instability
modes and the relative importance of the secondary modes to the fluctuations of the primary
instability. The measurements for this case begin at z/c = 0.40, where there is already some
overturning of the stationary structure (Figure 123). The fluctuation spectra (Figures 124
126) are all very low amplitude here, but a low-frequency mode at 200 Hz can be extracted
(Figure 127) from the data. »

The structure continues to develop with only the low-frequency mode detected until
z/c = 0.46, where a secondary mode first appears. For this location, the mean-flow con-
tours are shown in Figure 128 and representative spectra are shown in Figures 129-131.
The 200-Hz low-frequency mode shown in Figure 132 is much more distinct here and it
demonstrates the same sort of redistribution that was observed for the previous cases. The
secondary instability fluctuation distributions at 2.4kHz are given in Figure 133. The loca-
tion demonstrates that in this case, as in the previous cases, the type-I mode is the dominant
secondary instability mode. .

Moving to z/c = 0.50, the mean-flow contour is given in Figure 134 .and example
spectra are given in Figures 135-137. The spectra show that for this Reynolds number
and roughness configuration, the boundary layer has more of the character of the baseline
case rather than of the high-amplitude roughness case that was presented in Section 3.3.2.
The low-frequency mode does not extend to higher frequencies and the mode-I secondary
instability frequency is growing significantly. The 200-Hz mode amplitude distribution is
shown in Figure 138 and the mode-I secondary instability is shown in Figure 139. Both
modes have very good definition. Although it is not apparent from the spectra, a 4.9-kHz
mode can be extracted at this location. Its amplitude distribution (Figure 140) shows this
to be a type-II mode produced by the wall-normal shear layer. '

At z/c = 0.55, the appearance of the instability modes is quite dramatic. The mean-flow
contours are typical (Figure 141), but now the spectra (Figures 142-144) show dramatic
growth of the mode-I peak as well as at least two additional higher frequency modes at two
and three times the frequency of the mode-I peak. The spatial distributions of the 200-Hz,
2.4-kHz, 4.9-kHz, and 7.5-kHz modes are shown in Figures 145-148. The 200-Hz mode
appears in its usual position relative to the mean-flow structure. At this chord location,
all of the high-frequency modes lie in the mode-I orientation where the 8U/dz shear is
strongest. There is no evidence of mode-II behavior.

Breakdown is first detected at z/c = 0.57. The mean-flow contour is not v1s1bly changed

- (Figure 149), but the spectra near the wall to the left of the low-momentum upwelling region

(Figure 150) have a flat, turbulent character. The other spectra (Figures 150-152) do not
show turbulent characteristics, which explains why the structure high in the boundary
layer persists. The total velocity-fluctuation rms is shown in Figure 153. This figure shows
that the low-frequency activity and high-frequency activity are about equally important
for this breakdown scenario because the two regions of the stationary structure have equal
intensities. The fluctuation growth curves in Figure 154 confirm rapid growth of both the
2.4-kHz and 4.9-kHz type-I modes.

‘3.3.4 Increased Reynolds number case

As a fourth case we consider Re. = 2.8 x 10% with [54/12] roughness. In this case the
12-mm crossflow waves produced by the roughness array are supercritical; without artificial
roughness a 10.2-mm wave is detected. Because the basic secondary instability processes are

now well established by the previous cases, the present case begins at z/c = 0.30, where the
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secondary instability is first detected. What is immediately apparent from the mean-flow
contour plot (Figure 155) is that short wavelength harmonics of the 12-mm mode are quite
important here. To the left of the low-momentum upwelling that is centered at z = 85 mm,
there is a distinct plateau where there is not a strong OU/0z gradient. The mean-flow
contours immediately suggest that the mode-I instability will not be as important in this
case as in the previous cases because the region in which it is most strongly amplified has
been reduced. Instead the type-II mode may play a more important role.

Velocity-fluctuation spectra for z/c = 0.30 are given in Figures 156-159 for 2 = 80.2,
82.6, 85.0, and 87.4 mm. Four stations are used here instead of the three that are used above
because of the more complex stationary structure. In all of these, a broad, high-amplitude
band centered at 300Hz is amplified. The very low amplitude secondary instability is
just visible at z = 85.0 mm, directly above the low-momentum upwelling center. For this
Re. = 2.8 x 108 case, 300 Hz is representative of the most amplified traveling crossflow wave
and 3.6 kHz is representative of the mode-I instability. Distributions of these two modes are
given in Figures 160 and 161, respectively. The 300-Hz mode is somewhat different from
the shapes that occur for critical- and subcritical-wavelength forcing; here there are distinct
maxima within the structure. The highest fluctuation amplitudes occur just to the right of
the low-momentum upwelling region as in the previous cases, but the region near the wall
to the left of the upwelling also contains significant low-frequency fluctuations, as does the
upper part of the overturning region. Although the highest amplitude part of the structure
occurs in roughly the same span position as in previous cases, it is somewhat lower in the
boundary layer and elongated in span. The 3.6-kHz mode is barely detectable over the
background fluctuations, but it can be identified as a type-I mode based on its location
within the stationary structure.

‘Several stations downstream at z/c = 0.35, the mean flow (Figure 162) has a character
similar to the mean flow at z/c = 0.30. The representative spectra at z = 66, 68, 70, and
72mm (Figures 163-166) indicate that while the secondary instability has grown signifi-
cantly, it does not exist as close to the wing on the left side of the stationary structure as it
does in other cases that do not feature supercritical roughness forcing. The minor lobes of
the 300-Hz mode (Figure 167) have disappeared by this station, but the mode retains the
elongated shape it demonstrated at z/c = 0.30. Figure 168 confirms that the 3.6-kHz mode
is not close to the wall and is in fact creeping along the stationary structure into the region
occupied by the type-II instability. Previously, the behavior was the opposite. A type-II
mode might be observed early, but it would tend to shift down into the mode-I region. The
type-II mode is apparent in Figure 169. .

Moving to z/c = 0.37, the mean-flow contours are given in Figure 170. The most in-
teresting feature of this location is that the spectra (Figures 171-174) show that above the
overturning region, the center of mode-II activity, the 6.5-kHz type-II mode is of nearly
equal amplitude to the 3.6-kHz type-I mode, despite having started growing farther down-
‘stream. Mode II is more highly amplified, so this case appears to conform to the expectation
that supercritical forcing can suppress the mode-I instability in favor of the mode-II insta-
bility. The 3.6-kHz and 6.5-kHz fluctuation distributions are given in Figures 175 and 176,
respectively. '

Breakdown is observed at z/c = 0.385. The mean-flow contours shown in Figure 177 do
not appear markedly different; only the spectra above the low-momentum upwelling appear
to have undergone breakdown. Figures 178-181 show that there is mode-I activity to the
far left of the center of the vortex at z = 58 mm, that breakdown has occurred in the overlap
region between the type-I and low-frequency modes, and that mode-I and mode-II activity
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is still present high in the boundary layer at z = 64 mm. The total rms fluctuations for this
location are given in Figure 182, and for this distribution they indicate that the amplitude
of the mode-II secondary instability is nearly as large as the low-frequency mode.

Finally, the growth rates for the Re, = 2.8 x 10° case are given in Figure 183. This'figure
shows that even though the traveling waves are higher amplitude, transition still appears
to be triggered by the secondary instability modes. Breakdown occurs almost immediately
following their detection. The growth of the secondary instability modes from the initially
detected amplitude to their amplitude at breakdown for this case is the lowest level seen
in any of the experiments, yet their presence appears to be critical. The most interesting
feature of this case is the confirmation that the mode-II instability has a higher growth rate
than the mode-I instability for this level of supercritical forcing because of the modified
characteristic of the underlying mean flow.

3.3.5 Enhanced freestream fluctuation cases

If one is to claim that the secondary instability is selely responsible for breakdown of the
laminar boundary layer, an important piece of supporting evidence could be that an in-
crease in initial secondary instability amplitude leads directly to enhanced breakdown. In
this subsection two means of introducing such an initial amplitude increase are attempted,
freestream acoustic forcing and enhanced freestream turbulence. In both of these cases the
idea is to choose a location just upstream of the breakdown location and observe whether the
introduction of increased initial disturbance amplitude at the secondary instability frequen-
cies moves transition location. The location just upstream of breakdown is used because
this position includes the integrated effect of the entire instability process, and if there is
to be any effect of enhanced initial amplitude it will be most obvious there. Detection of a
positive result would then prompt more-detailed measurements. ‘

The experimental results of Radeztsky et al. (1999) would tend to discount the likelihood
of observing such a result for acoustic forcing, since in those experiments no effect on
transition was observed with up to 95-dB acoustic forcing at various frequencies, including
the secondary instability frequency range. However, those experiments were conducted
without periodic leading-edge roughness and hence with a lower-amplitude, less-organized
stationary-disturbance state. Introduction of periodic roughness for an acoustic forcing
experiment might yield different results. Also, because the secondary instability grows so
rapidly (as was shown in the previous section), even a significant increase in the initial

- amplitude of the secondary instability might not be manifested in a dramatic change in

the transition location. Because breakdown occurs within a few percent chord of where
the secondary modes destabilize, an increase in the initial amplitude could at most move
the transition location upstream by this same few percent chord. Because the change in
transition location could be quite subtle, it is not clear that this would have been detected,
because at that time, the details that we now understand regarding the secondary instability
growth were not known.

Acoustic forcing is more straightforward than turbulence forcing because it simply re-
quires activating the speakers in the plenum upstream of the test section during an ex-
periment. This means that it is possible to obtain high and low acoustic levels during a
single run without any experimental hardware changes. Two tests are conducted, both
with [54]12] roughness. The first test is conducted at Re, = 2.4 x 108, z/c = 0.39, z = 86—
89mm, the location of maximum secondary instability activity (see Figures 110 and 115).
At these locations, sound frequencies between 2.0 kHz and 4.0 kHz were applied at the max-
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imum amplitude available in the facility, 125dB. At frequencies above 2.8 kHz, the sound
amplitude decreased significantly due to the capability of the speakers (woofers designed
for frequencies in the hundreds of Hertz). For the entire range of secondary instability
frequencies, no change in the boundary-layer velocity-fluctuation spectrum was observed at
any position within the stationary-vortex structure at the 39% chord position. The sec-
ond test is conducted at Re. = 2.0 x 108, z/c = 0.55, z = 88 mm (see Figures 141 and
146). These conditions are better than in the previous case because the mode-I secondary
instability is centered near 2.4 kHz, within the capability of the speakers, and because the
maximum amplitude of the secondary instability is much greater than the surrounding fre-
quency band, so the spectral signal is unambiguous. However, as with the higher Reynolds
number case, maximum-amplitude acoustic input from 1.5-3.0 kHz had no discernible effect
on the boundary layer.

To assess the effect of freestream turbulence on the secondary instability,” a small
turbulence—generatlng grid is positioned in the contraction cone upstream of the test section.
The grid produces u;,s/Us as high as 0.0029, high enough that traveling-wave-dominated
flow might result. Spectra of the v’ are flat up to about 800Hz and roll off thereafter,

reaching a minimum by 4kHz. Tests at all three chord Reynolds numbers are performed

with the turbulence grid in place. In all cases the traveling waves are enhanced, but in no
case does the transition behavior change, and no changes are detected in the behavior of
the secondary instability. The fundamental problem with this approach is the problem of
applying high-frequency turbulence without also inducing the low-frequency content that
will produce overwhelmingly large traveling primary crossflow waves.

These tests underscore a fundamental difficulty associated with boundary-layer stabil-
ity experiments. One must always consider the mode of receptivity when attempting a
controlled means of forcing an instability. For secondary instabilities, the problem is even
more pronounced. Here, the receptivity encompasses both the initial entrainment of the
freestream disturbance of the desired frequency and the subsequent evolution of that mode
until the secondary instability becomes amplified.
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Chapter 4

Absolute Instability

As described in the introduction, an alternative mechanism to saturation and secondary
instability growth that ‘could explain the insensitivity of the transition location to surface-
roughness amplitude is the existence of an absolute instability. An absolute instability is
a mode with zero group velocity and a positive temporal growth rate. The ramification
of this behavior is that such a disturbance will grow to large amplitude at a particular
location regardless of the initial disturbance amplitude or duration. The location at which
the group velocity goes to zero depends on the local boundary-layer-scale Reynolds num-
ber and disturbance wavenumber, but not the disturbance amplitude. So in some sense,
the existence of an absolute instability can guarantee transition at a particular location
because initial disturbances of low amplitude are unavoidable. Previous researchers have
found that for the related rotating disk problem, both a secondary instability (see Kohama,
1984, for example) and an absolute instability (Lingwood, 1995, 1996, described below) are
possible. For the rotating disk, the selection mechanism for the transition process appears
to be surface-roughness amplitude. For high roughness amplitudes, the secondary instabil-
ity appears, whereas in low-disturbance environments, the absolute instability is observed
(Lingwood, 1995). The possibility that swept-wing crossflow boundary layers are subject
to an absolute instability and that this produces transition behavior insensitive to initial
roughness amplitude is explored in this chapter.

4.1 Foundation

A rigorous mathematical framework exists to determine if a flow is stable, convectively un-
stable (i.e., unstable only for non-zero group velocity disturbances), or absolutely unstable.
This method is referred to as Briggs’ method (named after Briggs, 1964, who developed
the method in connection with instabilities encountered in plasma physics). A review of
the method with application to fluid stability is given by Huerre & Monkewitz (1990). In
- essence, to identify an absolute instability, one considers the long-time response of a lin-
earized system to impulsive forcing. This problem is represented by £LG(z,t) = o(z)d(t).
The solution for the Green’s function, G(z,t), is

eilkz—wt)
Glz,t) = 27T //Dkadwdk, (4.1)

where the term in the denominator is the dispersion relation, D(k,w, R) = 0, that results
from the solution of the homogeneous problem, £¢(z,t) = 0. Evaluating this integral re-
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quires choosing contours in the complex w- and k-planes that maintain causality (i.e., no
response for t < 0) and properly treat singularities introduced by the dispersion relation.

\
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The correct approach to choosing the integration contours for (4.1) is Briggs’ method.
First, causality requires that the contour L be a line located above any poles in the w-plane
and be closed in the upper-half plane for ¢ < 0 (or the lower-half plane for ¢ > 0). Second, if
there is to be an absolute instability, at least two poles, k(w), must exist in the k-plane. For
an L contour far enough above any w-plane singularities, the two singularities, k™ (w) and
k™ (w), are located above and below the real axis, respectively. As the L contour is lowered
toward the real axis, the k% (w) curves deform and the F contour (which was originally along
the real k-axis) must be deformed as well to avoid the singularities. At some point, the k% (w)
curves touch at a so-called pinch point. This pinch point is denoted kg and is where the
group velocity, Ow/0k, is zero, and where the upstream- and downstream-traveling modes
merge. If the temporal growth rate Im(wg) at ko is positive, then this point represents
an absolute instability. The mode is stationary and has positive temporal growth. If the
temporal growth rate at kg is negative, then the flow is not absolutely unstable; it may be
convectively unstable (i.e., positive temporal growth rate for a non-zero group velocity) or
stable.

4.2 Literature review

There are two reasons to consider an absolute instability in swept-wing boundary layers.
First is the result obtained by Reibert et al. (1996) that the amplitude of roughness arrays
near the first crossflow neutral point has almost no effect on the transition location. Recall
that for 12-mm-spaced roughness arrays at 2.5% chord, roughness amplitudes of 6, 18, and
48 um produced transition at 49%, 51%, and 52% chord, respectively, at Re, = 2.4 x 108,
This type of behavior would be expected for an absolute instability because regardless of
the initial disturbance amplitude, the point at which the instability ceases to be convective
and becomes absolute determines the point of transition. For Reibert et al.’s experiment,
this would be between 49% and 52% chord. Different transition locations result from dif-
ferent wavelength disturbances, but this is simply because different wavelengths have differ-
ent stability characteristics. Similarly, different chord Reynolds numbers produce different
transition locations for identical roughness conditions because the critical Reynolds num-
ber (based on boundary-layer thickness) for the absolute instability is achieved at different
chord locations.

One aspect of the transition-location data that does not fit with the linear Briggs’
method model outlined in the previous section is the case of no artificial roughness. Radezt-
sky et al. (1999) found that for the same model and Reynolds number considered by Reibert
et al. (1996) above, transition did not occur until 77% chord for a 0.25-pm-rms surface fin-
ish. This means that a linear model may not be sufficient to describe the absolute instability
present on the swept wing (if such an instability exists). Obviously the existence of artifi-
cial roughness is important for providing mean-flow distortion and modification of the basic
state. So what must be considered is the possibility that the modified mean-flow field that
results from the stationary crossflow disturbance supports an absolute instability. That
possibility is a subject of the present investigation.

The other reason to consider an absolute instability for swept-wing transition is that an
absolute instability is known to be present for the rotating disk boundary layer, a model
problem for swept wings. The presence of an absolute instability was predicted by Ling-
wood (1995) using Briggs’ method. Lingwood shows that the onset of the absolute in-
stability occurs at R = 510, and experimentally determined transition Reynolds numbers
for low-disturbance environments are centered about R = 513. In an experiment designed
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specifically to investigate absolute instability behavior, Lingwood (1996) traced the evo-
~ lution of transiently forced disturbances and showed that the radial group velocity does
indeed go to zero with positive temporal growth and cause transition.

The rotating disk result is quite convincing, but the extension to swept wings is not as
direct as might be imagined. Although each geometry is a 3-D crossflow boundary layer,
the axial symmetry of the rotating disk means that one need only consider whether the
radial group velocity goes to zero, because any disturbance that exists at a fixed radius will
spread in the circumferential direction and contaminate an entire radial band. On swept
wings, there is no such symmetry, so if the disturbance velocity goes to zero in only one -
direction the disturbance will still convect in the other direction, leaving the initial position
disturbance free. Thus what could be thought of as an absolute instability of one direction
is not sufficient for a true absolute instability. An extension of Briggs’ method to the swept-
wing boundary layer requires simultaneous pinching of the contours in both the streamwise-

-and crossflow-wavenumber planes.

The difficulty of achieving such simultaneous pinching is acknowledged by Lingwood
(1997). She applies the generalized approach to an FSC. boundary layer to determine
whether swept-wing-type flows can support an absolute instability despite the more strin-
gent criteria. The FSC geometry is a closer approximation to the swept wing than the
rotating disk because it provides for pressure gradient and sweep and because it does not
possess the symmetry inherent to the rotating disk. However, the FSC configuration retains
an advantageous feature of the rotating disk: a similarity solution for the mean flow exists,
making parametric studies relatively easy. Lingwood finds that a pinch point does exist for
the chordwise wavenumber plane for very strong favorable pressure gradients (8g = 1.0,
i.e., near the attachment line) and high sweep angles (greater than 80°), but no simultane-
ous spanwise pinching is observed. Thus a true linear absolute instability does not exist for
FSC boundary layers, and furthermore, the parameter range for which a single direction
becomes nonconvective is quite restricted.

Lingwood’s approach was extended by Taylor & Peake (1998), who consider both FSC
and true swept-wing configurations. These authors determine that the parameter range
that supports single-direction pinch points is larger than the region identified by Lingwood
(1997), but despite this, the flow still does not support an absolute instability. Taylor
& Peake (1999) make yet another extension to compressible FSC and swept-wing flows
and still find no absolute instabilities. For these more realistic configurations, even the
attachment-line region identified by Lingwood (1997) is not absolutely unstable.

A critical feature that is not considered by any of these computations is that stationary
crossflow waves on the swept wing render the disturbance evolution highly nonlinear. The
modification of the mean-flow basic state means that the velocity profiles considered by
Lingwood (1997) and Taylor & Peake (1998, 1999) do not represent what actually exists in
the boundary layer near the transition location. In light of the saturation data of Reibert
et al. (1996), it is conceivable that although the nondeformed linear basic state does not
support an absolute instability, the highly modified nonlinear boundary layer does. It is
with this possibility in mind that a transient forcing experiment is performed as part of the
current swept-wing transition program.

4.3 Experimental approach

The most robust experimental means of determining whether an absolute instability exists
is to apply a transient initial disturbance and observe the spatial and temporal evolution of
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the resulting wave packet. If the group velocity goes to zero somewhere in the flow while
the disturbance grows to large amplitude, an absolute instability exists at that location.
This approach is the experimental equivalent to the Green’s function solution that forms
the basis of Briggs’ method. This constitutes the “hard” but convincing approach suggested
by Huerre & Monkewitz (1990) and is exactly the technique employed by Lingwood (1996)
in the rotating disk experiment. In that work, Lingwood was able to position a hotwire
at a single point for each radial position and construct a complete picture of the wave-
packet growth both spatially and temporally using phase-locked averaging of the velocity
signals and taking advantage of the disk’s axial symmetry. The situation is somewhat more
difficult for swept wings because the lack of symmetry and the importance of stationary
structures mean that one cannot capture all of the necessary data at a single measurement
location. Instead, measurements over a range of span for each chord location are required
to provide information about the entire flow. For this reason, it is more efficient to consider
step-function-type forcing rather than delta-function forcing so that measurements at many
span locations can be obtained for a single forcing cycle.

The approach used here to determine whether swept-wing crossflow transition can sup-
port an absolute instability is to apply variable-amplitude leading-edge roughness and to
determine whether there is a true insensitivity to initial conditions during a single exper-
iment. For this experiment, we first supply low-amplitude (denoted “inactive”) roughness
using the variable-amplitude roughness insert described in Chapter 2 and observe that the
flow is laminar for a particular chord location and Reynolds number. Then upon increasing
the roughness amplitude (denoted by “active roughness”) we observe that the flow becomes
turbulent for the same location and Reynolds number. Inactive roughness is flush with
the undeformed surface (except for the inherent flaws that were described previously); the
active roughness is approximately 50 pwm displacement. For the inactive-roughness case, the
flow at the measurement station is laminar and thus there is no absolute instability. For the
active-roughness case, the flow is turbulent and if the transition mechanism is an absolute
instability, it is active for the larger-amplitude roughness. Finally, the roughness amplitude
is decreased to the original inactive amplitude. If the state of the flow reverts to laminar
when the roughness is deactivated, then the transition mechanism must be purely convec-
tive because the large-amplitude disturbance has convected away from the measurement
location. If the flow remains turbulent after the roughness amplitude is decreased, then the
instability must be absolute somewhere upstream.of the measurement location so that the
large-amplitude disturbance can continue to exist without a disturbance source. Hysteresis
is the marker for the absolute instability. _

The experimental measurements consist of hotwire scans along lines of constant chord
and constant wall offset. Each experiment sequence begins with three boundary-layer pro-
files at the starting, middle, and ending span positions. These profiles are used to identify
the position of the wing surface in the traverse-oriented coordinate system using the nonlin-
ear, progressive wall-search procedure described earlier. With the span points, a polynomial
wall-position estimate is constructed. Using this estimate, the hotwire is positioned at a
predetermined distance from the wall and the mean and fluctuating components of velocity
are obtained in the same manner as in the secondary instability experiment. Once again the
hotwire is oriented parallel to the local surface in the manner described in Chapter 2. The
wall distance is selected to give an average value of the boundary-layer-to-edge velocity ratio
of about 0.85. The exact value of this ratio is unimportant because the desired experimental
output is simply turbulent/laminar, and this will be apparent at any point sufficiently close
to the wall. The ratio 0.85 is simply a value for. which large mean-velocity variations can
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be expected and for which the hotwire will be far enough from the surface that it can be
moved without danger of hitting the surface. The hotwire is stationary at each point while
the velocity data are obtained, and following each point the traverse is moved in the posi-
tive span direction, z, and adjusted in Y to maintain the correct offset from the local wing
surface. Following a complete run along the span, the hotwire is returned to the starting
position, the pressure input to the variable-roughness insert is adjusted, and the next run
is begun.

Several aspects of the experimental data are most revealing. The basic output of the
experiment is the mean flow, U/Uegge, as a function of the span, z. For each Reynolds
number and chord station considered, these curves are presented for an initial inactive-
roughness case, an active-roughness case, and a second inactive-roughness case. The three
states are acquired sequentially during a single, continuous wind-tunnel run. If the second
inactive case is the same as the first, the boundary layer does not support an absolute
instability. If the second inactive case is somehow fundamentally different from the first,
then there is reason to believe that an absolute instability may be present in the boundary
layer.! It is useful to observe the behavior of the stationary crossflow modes by calculating
the spatial (spanwise) mean-flow power spectra. For each Reynolds number, at least two
chord locations are considered and the behavior of the stationary modes (i.e., growing,
saturated, or dissipating due to turbulent fluctuations) helps to demonstrate the laminar or
turbulent state of the particular cases. Another means of understanding the flow is gained by
examining the spanwise distribution of the fluctuating-velocity power at the most amplified
frequency of the secondary instability. In the previous chapter it was observed that this
amplitude grows by many orders of magnitude through transition, so the high-frequency
fluctuations provide a more sensitive indication of the state of transition than the mean
flow. Moreover, the results of the previous chapter provide a means of evaluating what is
represented by the various high-frequency fluctuations. Finally, velocity-fluctuation spectra
at particular locations are provided as another means of indicating the laminar, transitional,
or turbulent state of the boundary layer.:

4.4 Results and discussion

4.4.1 Baseline case

For the baseline case of Re, = 2.4 x 10%, the two most revealing measurement stations are at
z/c = 0.43 and x/c = 0.45. However, to place the results at those locations in context, it is
useful to first examine results from z/c = 0.40, a (nearly) purely laminar case for both active
and inactive leading-edge roughness. Figure 184 shows the mean flow at z/c = 0.40 and
Y = 1.5mm. It is evident in this figure that although the active-roughness case has larger-
amplitude mean-flow deformation, the inactive-roughness case shows significant deformation
as well. The spatial power spectra of these spanwise mean-flow data (Figure 185) reveal
that in the active-roughness case nearly all the stationary disturbance power is concentrated
in the 12-mm mode, with some growth of the 6- and 4-mm harmonics. These spectra are
generated from 128 span locations as shown in Figure 184. The original data are spaced
at 1-mm increments of z. For the inactive roughness, there is a broader but much lower
amplitude distribution of stationary-disturbance power centered about the most amplified

1f an absolute instability is suspected based on the initial experiments, a more convincing set of exper-
iments is required. These would consist of point-by-point phase-locked averaging over many forcing cycles
to reconstruct the disturbance velocities throughout the boundary layer. '
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stationary wavelength. This is exactly what should be expected for low-amplitude, ran-
domly distributed leading-edge roughness. It is clear that although the variable-amplitude
roughness insert is not capable of producing zero-amplitude stationary-mode distortion,
the amplitudes of the disturbances that result are much lower than those of the activated
state. Returning to the mean-flow curves of Figure 184, notice that there is a strong feature
near z = 75mm. The velocity minimum that exists for both the high- and low-amplitude
roughness configurations is a nascent turbulent wedge. It is nearly impossible to remove
all the isolated receptivity sources from the variable-roughness insert, and features like the
isolated wedge in Figure 184 cannot be eliminated from the experiment. A close inspection
of the roughness insert failed to reveal any potential sources of this particular disturbance.
As long as features such as this are isolated and can be reasonably demonstrated not to
dominate the transition behavior being investigated, they do not interfere with the ability to
draw conclusions about an absolute instability. Admittedly it would be preferable to work
with an absolutely clean basic state, but nature of the variable-roughness system makes it
impractical to achieve such a condition.

Moving to z/c = 0.43, Figure 186 provides the first indication that an absolute instability
is not responsible for transition. This figure represents three back-to-back spanwise mean-
flow scans at Y = 2.0 mm that were obtained during a continuous wind-tunnel run for which
the roughness was first nominally inactive, then activated, and finally deactivated. The two
inactive cases are indistinguishable to the degree that can be reasonably expected from the
experiment. The spatial spectra given in Figure 187 show that here the active-roughness
case has a higher-amplitude 12-mm mode than the inactive cases, but the amplitude is
much lower than the active case at z/c = 0.40, whereas for the inactive cases the entire
amplified crossflow wavelength band is still growing. In the active case, the flow has ended,
or it is in the final stages of breakdown, at all spanwise locations when the roughness is
activated. With the possible exception of the turbulent wedge, the flow is entirely laminar
for both inactive-roughness cases. If an absolute instability were responsible for transition,
then the second inactive-roughness case would be markedly different from the first. Clearly
this is not so. For this parameter set, at least, the instability is convective.

Velocity-fluctuation data are useful to demonstrate that breakdown has occurred for the
active-roughness case but not the inactive case, and to further demonstrate that the two
. inactive cases are essentially identical. Figure 188 shows the spanwise distribution of 3.0-
kHz velocity-fluctuation power. (Recall that 3kHz is the center of the mode-I secondary
instability frequency band for Re. = 2.4 x 108.) The active-roughness case has reached
turbulent or nearly turbulent fluctuation levels everywhere, whereas the inactive cases are
still completely laminar, with the exception of the rogue turbulent wedge centered at z =
66 mm. Near z = 108 mm and z = 120 mm there are signs that the secondary instability is
amplified for the inactive case, but the fluctuation levels at these points indicate that the
flow is still laminar. ‘

Figure 189 includes velocity-fluctuation spectra for the first inactive- and active-
roughness cases at 2 = 24 mm. For the active-roughness setting, this is a region of minimal
3.0-kHz disturbance amplitude in a neighborhood of 12-mm-periodic 3.0-kHz activity. There
is a band of higher frequency activity, however. This suggests that z = 24 mm is one of
the regions in the upper-middle or upper-right of the fluctuation distribution figures of the
previous chapter where there is never mode-I activity but where there are some mode-II
fluctuations. The inactive-roughness spectra are completely benign.

For z = 31mm (Figure 190), the 3.0-kHz power of the active-roughness case is at a
local maximum and the spectral characteristics suggest that this is a region of mode-I
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secondary instability activity just prior to the end of breakdown. The inactive- roughness
case appears fully laminar without any signs of secondary instability growth. At z = 46mm
(Figure 191), the onset of breakdown in the active case is farther upstream than it is
for the structure at z = 31 mm, because at z = 46 mm, active roughness produces fully
turbulent flow. At z = 66 mm, the center of the turbulent wedge (Figure 192), the active-
roughness case is indeed turbulent, but the inactive case is still in the midst of secondary
instability growth as evident from the distinct bands of mode-I and mode-II activity in
the velocity-fluctuation spectrum. It is somewhat surprising that the behavior produced
by the two roughness configurations is different here. One might expect that whatever
feature inherent to the roughness device that produces the wedge would be sufficient to
cause earlier transition regardless of the amplitude of the periodic disturbances on which it
is superposed. However, the breakdown of the feature generated by the isolated roughness
does depend on the background periodic disturbance. The details of the primary instability
interaction between a large amplitude isolated feature and a lower-amplitude periodic field
have not been investigated, and this may represent an important topic for further study.
It is easy to imagine that on an actual aircraft employing subcritically spaced roughness
arrays to suppress crossflow transition, such isolated features would be plentiful, and it
is unclear what the resulting behavior would be and whether isolated roughness elements
could prevent such a system from working. :

Moving finally to z = 108 mm (Figure 193), the spectra associated with the inactive-
roughness amplitude peak contain the early stages of the mode-I secondary instability
growth and the active-roughness case is fully turbulent. Taken together, the spanwise mean
flow (Figures 186 and 187), the 3-kHz fluctuation curves (Figure 188), and the individual
point spectra (Figures 189-193) show that the instabilities present can be fully understood
in terms of secondary instability growth, and that there is no indication of an absolute
instability.

At the third chord location for Re, = 2.4 x 108, z/c = 0.45, the now fully turbulent
active-roughness case exhibits significantly lower spanwise mean-flow variations because
of the continuing turbulent dissipation of the crossflow vortices. The amplitude of the
variations in Figure 194 is visibly reduced relative to the upstream locations, and the spatial
spectra in Figure 195 confirm this. Even the minimum in the mean-flow velocity associated
with the turbulent wedge has disappeared. The data that are obtained prior to and following
the turbulent active-roughness case are again nearly identical. There is no hysteresis and no
absolute instability. The distributions of 3.0-kHz velocity-fluctuation power in Figure 196
show that the active-roughness case consists of fully turbulent flow. The inactive cases
remain almost entirely laminar, except for the turbulent wedge that has grown to cover
approximately 24 mm of the span.

For this chord station, the most interesting fluctuation spectra are obtained at z =
60mm and z = 102mm. At z = 60mm (Figure 197), the wedge is now turbulent for
the inactive case, with some remnant of the mode-I secondary instability still visible. The
active case is turbulent as it was at the upstream station. At z = 102mm (Figure 198),
the active-roughness case remains turbulent but here the secondary instability is strongly
amplified in the inactive case. So overall, the z/c = 0.45 data confirm that the instabilities
driving transition are convective.
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4.4.2 Increased Reynolds number case

For Reynolds number Re, = 2.8 x 108, the two chord stations considered are z/c = 0.38
and z/c = 0.40. Starting at z/c = 0.38, Figure 199 indicates that, as in the baseline case,
there is no hysteresis when changing from inactive to active and back to inactive leading-
edge roughness. So here, too, there is no indication of an absolute instability. The spatial
spectrum of the mean flow (Figure 200) shows that the active-roughness case produces
a distinct 12-mm mode, whereas the inactive case again produces a broad, low-amplitude
response. Note that the interesting feature of this higher Reynolds number is not necessarily
the different transition location, but the fact that for this condition the most arripliﬁed
stationary crossflow wave is not the 12-mm wave, but is instead a shorter wavelength.
For this case the forced wavelength is detuned from the most amplified wavelength that the
spatial spectrum indicates is at As = 10.2 mm. The spectral resolution is quite poor because
the emphasis of the experiment is on rapid data collection rather than mode identification.
The wavelength resolution is about 1.6 mm at 10.2mm. At Re. = 2.8 x 108, 4.0kHz is
near the center of the mode-I secondary instability frequency band. The distributions of
4.0-kHz velocity-fluctuation power for the various roughness configurations are given in
Figure 201. It is evident in this figure that with activated roughness the entire span range
is turbulent, whereas with inactive roughness there is a large region of laminar flow and two
turbulent regions. For the entire span, no hysteresis is observed in the fluctuation levels
as the upstream roughness state is altered. Velocity-fluctuation spectra are given for three
span locations: z = 23, 26, and 84 mm. At z = 23 mm (Figure 202), the inactive-roughness
case shows amplified mode-I activity centered at 4.0kHz and the active-roughness case is
turbulent. Nearby at 2 = 26 mm (Figure 203), there is no secondary instability fluctuations
in the inactive case. Finally at z = 84mm (Figure 204), the flows of both the inactive
and active cases are fully turbulent. The roughness insert used for these Re, = 2.8 x 108
experiments is the same as that used for the Re, = 2.4 x 108 experiments, so the turbulent
flow observed near z = 84 mm is likely part of the same turbulent wedge structure that is
discussed above. _

Moving downstream to x/c = 0.40, the mean-flow curves (Figure 205) again show no
evidence of an absolute instability. The two inactive-roughness cases, however, do show
more significant differences than some of the previous cases. The reason for this is the
difficulty in obtaining good measurements at the breakdown location, especially at high
Reynolds numbers. The high Reynolds number produces a thin boundary layer and rapid
tunnel heating; both make it difficult to maintain good control of the hotwire position
in terms of nondimensional wall offset. The result is somewhat reduced repeatability of
the experiment. Bear in mind that an absolute instability would be manifested by gross
changes in the transition-region boundary-layer behavior, and clearly this does not occur.

- The spatial spectra of the mean-flow data (Figure 206) reinforce that the 12-mm stationary
crossflow waves generated by the artificial roughness array are rapidly dissipating due to
turbulent fluctuations, but the shorter wavelength natural waves continue to grow. And,
finally, the distributions of 4.0-kHz fluctuations given in Figure 207 confirm again that the
flow recovers an initially laminar state when the activated roughness is removed.

4.4.3 Decreased Reynolds number case

As a final case consider Re. = 2.0 x 10%. This Reynolds number provides a condition for
which the 12-mm crossflow waves produced by the activated roughness are subcritical. Here
the first measurement station is at z /¢ = 0.58. The mean-flow curves are given in Figure 208,
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the spatial spectra of the mean-flow curves are given in Figure 209, and the distributions
of 2.0-kHz mode-I fluctuations are given in Figure 210. No hysteresis is detected in any
of these curves. The spatial spectra show that the dominant crossflow wavelength with
zero-amplitude artificial roughness is about 13.5mm. This station exhibits the widest band
of amplified wavelengths of any examined thus far. The band of amplified fundamental
wavelengths extends from 19.5mm to 8.8 mm and both its first and second harmonics are
visible. The active-roughness case is much more regular in span, and it has lower-amplitude
mean-flow variations. '

One consequence of the irregularity of the disturbance field is that the individual point
spectra in Figures 211-214 exhibit a variety of behaviors. Even though the active-roughness
case has a much higher fluctuation level across the span, the inactive cases actually break
down near z = 16 mm (Figure 211) where the active-roughness case does not. Furthermore,
the active-roughness fluctuations at z = 16 mm are centered at 3.0kHz, not 2.0kHz, as
are the highest-amplitude inactive-roughness fluctuations. This may represent behavior
nearly along the lines of that observed by Saric et al. (1998), who used subcritically spaced
roughness arrays to suppress transition. The active case is not sufficient to prevent transition
in general, however. At z = 53 mm (Figure 212), the active-roughness case is fully turbulent
while the inactive-roughness case has almost zero disturbance amplitude, as it does over
most of the span.

Because peaks at both 2.0kHz and 3.0kHz are observed for z/c = 0.58, the distribu-
tions of 3.0-kHz fluctuations are given in Figure 215 to supplement the 2.0-kHz fluctuation
distribution plots given in Figure 210. The 3.0-kHz mode is nearly identical to the 2.0-kHz
mode. Both are active across the span for the active-roughness case, but they only appear
at high amplitudes near z = 16 mm for the inactive-roughness. case.

The final absolute instability test is performed at z/c = 0.60. The mean flow for this
case is given in Figure 216. There is no change in behavior of the inactive-roughness cases,
'so there is no absolute instability. In Figure 217, the spanwise spectra of the inactive-
roughness cases indicate that the flow there has undergone amplitude saturation; the peak
of the most amplified mode is unchanged from z/c = 0.58. The active-case spectrum
indicates that the forced stationary wave is dissipating due to the higher fluctuation levels.
Figures 218 and 219 show that the fluctuations are still growing for the active case and the
high-amplitude peak in the inactive cases, but that across most of the span, the inactive
case remains free of high-frequency disturbances.

So for three cases on the ASU(67)-0315 wing, Re. = 2.4 x 10, Re, = 2.8 x 10, and
Re. = 2.0 x 108, the data show that there is no evidence of an absolute instability prior to
breakdown of the crossflow boundary layer. Moreover, in every case, the behavior of both
the stationary mode and the high-frequency fluctuations may be understood in terms of
secondary instability growth. Breakdown appears to be driven by that mechanism.
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Chapter 5

Conclusions

This work consists of two parallel tasks: an experimental investigation of the breakdown
mechanism of crossflow-dominated swept-wing boundary layers and a development effort
intended to integrate a MEMS-based roughness-actuator system into a swept-wing experi-
ment. The MEMS development work reveals a number of shortcomings of MEMS technol-
ogy (at'its present state) as applied to an external flow-control application. The MEMS
actuators are not capable of providing the required surface control both because of quality
control issues and becuase of installation difficulties. Without better manufacturing and
integration capabilities, MEMS technology will not be useful for swept-wing boundary-layer
control. ,

- The experimental phase is intended to provide conclusive data regarding two poten-
tial breakdown mechanisms of crossflow-dominated swept-wing boundary layers: a high-
frequency secondary instability and an absolute instability. The data presented here over-
whelmingly support the idea that an absolute instability is not responsible for breakdown.
Instead, the high-frequency secondary instability mechanism always appears to play a dom-
inant role. If an absolute instability existed, it would be detected by a transient-forcing
experiment performed in a low-disturbance environment. Chapter 4 consists of just such an
experiment, and no evidence is found for this type of instability at each of three Reynolds
numbers, Re, = 2.0 x 108, Re, = 2.4 x 108, and Re. = 2.8 x 106, using variable-amplitude
leading-edge surface roughness on a 12-mm-spaced array. That array provides subcritical,
critical, and supercritical wavelength forcing, respectively, for these three Reynolds num-
bers. ’ :
On the other hand, data from this experiment show that when stationary crossflow
waves reach saturation amplitudes, breakdown is always triggered via a secondary instability
mechanism. The secondary instability modes observed in this experiment are destabilized
in the saturated region and grow much more rapidly than the low-frequency mode that has
its origins in the most amplified traveling crossflow mode predicted by linear theory. Local
breakdown is always observed within a few percent chord of where the secondary instability

- is first detected.

The secondary instability modes that are observed may be classified into two general
categories, called type-I and type-II modes. What are termed type-I modes (after Malik
et al., 1996) lie inboard of the low-momentum upwelling zone of the stationary crossflow
vortices. These modes are Kelvin-Helmholtz instabilities of the spanwise shear layer of
the streamwise flow. This is the same type of behavior that is observed by Swearingen &
Blackwelder (1987) for secondary instabilities of Gértler vortices; spanwise gradients are
more important. The type-I mode extends diagonally in the (Y, z) plane, from close to the
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wall at the farthest point from the stationary vortex center to above the low-momentum
upwelling center. The secondary instability can be imagined as wrapping around the outside
of this portion of the stationary vortex. This is the behavior shown very clearly in the
rotating disk flow visualizations of Kohama (1984, 1985). In nearly all circumstances,
the lowest-frequency secondary instability is type I and is the largest amplitude secondary
instability mode that is detected. In many instances, one or more higher-frequency type-1
modes coexist in the same location. These are observed at close to integer multiples of the
lowest-frequency type-I mode. :

Although instability modes at integer multiples at the same spatial location strongly
suggest harmonics of the dominant mode, the growth rates do not always support this. In
the baseline case, the growth rates of the fundamental 3.0-kHz type-I mode and the 6.1-
kHz type-I mode have nearly equal growth rates. The 6.1-kHz mode would be expected
to have twice the growth rate of the fundamental were it a harmonic. However, growth
rates are more easily obtained for the Re, = 2.0 x 108, [54/12] roughness case, and here the
growth rate of the 4.9-kHz multiple of the 2.4-kHz fundamental type-I mode is about twice
as large. For the same case, a 7.5-kHz type-I mode was observed as well, and the spectra
show that even higher multiples exist. The other cases do not provide sufficiently good data
to obtain reliable higher-frequency-mode growth-rate comparisons. In light of the limited
and conflicting data, it is unclear whether these are harmonics that we cannot measure
accurately, or whether they are distinct modes. In any case, these results show that to
properly understand the breakdown region in as much detail as possible, narrow frequency
bands should be investigated separately. As many as five or more instability modes exist in
some cases, so tracking the behavior of bands as wide as a kilohertz or more can lump the
behavior of many modes into a single result. -

In one instance, Re = 2.4 x 108 with [18]12] roughness, a high-frequency mode of lower
frequency than the most amplified type-I mode was identified. This mode existed closer
to the wall than the typical type-I shape, and it may play a role in triggering breakdown
where the type-I mode makes its closest approach to the wall. This mode was not identified
in any other case and was difficult to separate from the higher-amplitude 3.0-kHz mode.

The second type of secondary instability mode, termed a type-II mode, was observed
much less frequently than the type-I modes. This mode exists high in the boundary layer .
above and somewhat outboard of the low-momentum upwelling center. This instability
is of the Kelvin-Helmholtz class, as is the type-I mode, but the type-II mode exists in
the wall-normal shear layer of the streamwise flow. The type-II mode occurs at about
twice the frequency of the highest-amplitude type-I mode. It is often overwhelmed by the
growth of the (possible) harmonic of the type-I mode and is therefore extremely difficult
to track experimentally. One exception is the supercritical forcing case, Re, = 2.8 x 108
with [54|12] roughness. For this configuration, the spanwise shear region is reduced and
the type-I modes do not reach the amplitude they do under more favorable conditions. In
this environment, the type-II mode is detected more easily and plays an important part in
triggering transition. ' ,

Although the low-frequency fluctuations that correspond to the most amplified primary
disturbance are not the focus here, their behavior is quite interesting and could represent
a useful topic of further study. These fluctuations start as a spanwise-uniform mode at
chord locations where mean flow is not deformed by the stationary vortices. However, these
fluctuations appear to be acted upon by the stationary vortices in the same manner as the
mean flow, and they become highly localized within the stationary structure even before
the stationary mode saturates. Despite the modification of the mean flow and the spatial
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redistribution of the low-frequency mode that results, these modes appear to grow linearly
throughout transition.

It is observed by comparing the hlgh-amphtude [54|12] roughness case at Re, = 2.4 x 108
to the low-amplitude [18]12] case at the same Reynolds number that an increase in roughness
amplitude increases the amplitude of the low-frequency mode. However, despite the higher
amplitude of the low-frequency mode, breakdown appears to be triggered by the appearance
of the secondary instability. Even when the low-frequency mode is higher amplitude than
the secondary instabilities, the breakdown location always occurs within a few percent
chord of where the secondary instability destabilizes. Conclusive evidence for this could
be provided by enhancing the initial amplitudes of the secondary instability independently
and observing a change in transition behavior. Unfortunately, attempts to do this both
with freestream sound and enhanced freestream turbulence were unsuccessful because of
the difficulty of directly exciting the secondary instability. '

Taken as a whole, the experiments demonstrate the range of behaviors that are exhib-
ited by the secondary instability, and they emphasize that to predict transition location in
crossflow boundary layers, one must be capable of predicting secondary instability behavior.
What we have seen is that the most important factor for the secondary instability is the
wavelength of the stationary disturbances. Different wavelengths, and their classification
as subcritical, critical, or supercritical, play an important role in selecting the dominant
secondary instability mode, either type I or type II. Previous experiments have shown that
roughness amplitude may not be important for determining transition location because of
amplitude saturation. That idea is extended here by noting that increased roughness am-
plitudes increase the amplitudes of low-frequency disturbances, but these do not appear to
trigger breakdown independently. This may not be so for low-frequency disturbances of
larger amplitudes than are produced in this experiment, but the low-disturbance environ-
ment is more representative of flight and therefore represents the most important practical
case. In the low-disturbance environment, breakdown always appears to be triggered by
secondary instability growth.
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Figure 1: Swept-wing streamline and coordinate systems.
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Figure 2: Crossﬂow boundary-layer proﬁles..
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Figure 3: Airfoil shape and suction-side pressure distribution, Cp 9, for the ASU(67)-0315
swept wing at —3° angle of attack.
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Figure 4: ASU(67)-0315 features.
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Figure 5: Modular leading-edge insert for the ASU(67)-0315.
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Figure 6: Schematic cross section of the variable leading-edge roughness device.
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Figure 7: Spanwise mean-flow hotwire scan at z/c = 0.20, Y = 1.0 mm, Re, = 2.4 x 108.

0.006

Active Roughness
Inactive Roughness ---------

0.005

0.004

0.003

Power [mm]

0.002

0.001

36
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Figure 10: Activated 3-mm-diameter roughness shape of a 10-pm-high element.
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Figure 11: Activated 3-mm-diameter roughness shape of a 50-pm-high element.
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Figure 12: Schematic view of the Unsteady Wind Tunnel. All dimensions in meters.
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Figure 13: Side view of the traverse frame. All dimensions in millimeters.
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Figure 14: Front view of the traverse frame. All dimensions in millimeters.
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Figure 15: Top view of the hotwire sting. All dimensions in millimeters.
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Figure 16: Schematic of root and tip wall liners for a zero-lift configuration.
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Figure 17: Upper and lower span suction-side Cp 3 distributions at Re, = 2.0 x 108.
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Figure 18: Upper and lower span suction-side Cp 3 distributions at Re. = 2.4 X 108,
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Figure 19: Upper and lower span suction-side Cj, 3 distributions at Re, = 2.8 x 106,
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Figure 22: Coordinate systems, X,Y plane.
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Figure 23: Mean-flow velocity profiles, Re, = 24 x 108, [18]12] roughness, z/c = 0.30,
z = 117-128 mm. :
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Figure 24: Mean-flow velocity contours, Re. = 2.4 x 10°, [18|12] roughness, z/c = 0.30,

contour lines at U/Ueqge = 0.10, 0.20, ..., 0.90.
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Figure 25: Fluctuating-velocity spectra, Re. = 2.4 x 105, [18|12] roughness, z/c = 0.30,
z =119 mm. :
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Figure 26: Fluctuating-velocity spectra, Re. = 2.4 X 109, [18]12] ‘roughness, m/c = 0.30,
z = 122mm.
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Figure 27: Fluctuating-velocity spectra, Re, = 2.4 X 108, (18|12] roughness, z/c = 0.30,
z = 125mm. ’ '
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Figure 28: 200-Hz velocity-fluctuation rms distribution, Re, = 2.4 x 108, [18]12] roughness,
z/c = 0.30, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 29: Schematic of the crossflow vortex velocity components and hotwire arrangement

parallel to the plane of the wing’s surface.
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Figure 30: Mean-flow velocity profiles, Re, = 2.4 x 108, [1812] roughness, z/c = 0.35,
z =103-114 mm. '
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Figure 31: Mean-flow velocity contours, Re, = 2.4 x 10%, [18/12] roughness, z/c = 0.35,
contour lines at U/Ueqge = 0.10, 0.20, ..., 0.90.
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Figure 32: Fluctuating-velocity spectra, Re. = 2.4 x 105, [18]12] roughness, z/c = 0.35,
z = 105mm.
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Figure 33: Fluctuating-velocity spectra, Re, = 2.4 x 10%, [18]12] roughness, z/c = 0.35,
z = 108 mm. '

85




Y=
Y =
Y=
Y=
107
N
<
= -9
5 10
2
o]
a
10"
JpRE T
10 100 1000 10000
Freq. [Hz]

Figure 34: Fluctuating-velocity spectra, Re. = 2.4 X 108, [18]12] roughness, z/c = 0.35,

z = 111 mm.
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Figure 35: 200-Hz velocity-fluctuation rms distribution, Re. = 2.4 x 10, [18|12] roughness,
x/c = 0.35, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.

86




Mean Profile

--------- Individual Profiles
——— RMS Stationary Disturbance

Os,
R N

0 0.2 0.4 0.6 0.8 1
U egger rMS(U-Upmean)/Uggge

Figure 36: Mean-flow velocity profiles, Re; = 2.4 x 108, [18|12] roughness, z/c = 0.40,
z = 89-100 mm. ‘
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Figure 37: Mean-flow velocity contours, Re, = 2.4 x 108, [18]|12] roughness, z/c = 0.40,
contour lines at U/Uggge = 0.10, 0.20, ..., 0.90. C
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Figure 38: Fluctuating-velocity spectra, Re, = 2.4 x 106, [18]12] roughness, z/c = 0.40,
z = 91 mm.
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Figure 39: Fluctuating-velocity spectra, Re. = 2.4 x 106, [18]12] roughness, z/c = 0.40,
z =94 mm. '
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Figure 40: Fluctuating-velocity spectra, Re. = 2.4 x 108, [18|12] roughness, z/c = 0.40,
z = 97mm.
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Figure 41: 200-Hz velocity-fluctuation rms distribution, Re, = 2.4 x 108, [18/12] roughness,
z/c = 0.40, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 42: 3.0-kHz velocity-fluctuation rms distribution, Re. = 2.4 x 108, [18|12] roughness,
z/c = 0.40, 2.9-3.1-Hz bandpass. Lines are 10% contours of the maximum in this band.
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velocity profiles, Re. = 2.4 x 108, [18|12] roughness, z/c = 0.41,

Figure 43: Mean-flow
z = 85-96 mm.
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Figure 44: Mean-flow velocity contours, Re, = 2.4 x 108, [18|12] roughness, z/c = 0.41,

contour lines at U/Ugqge = 0.10, 0.20, ..., 0.90.
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Figure 45: Fluctuating-velocity spectra, Re, = 2.4 x 108, [18|12] roughness, z/c = 0.41,
z = 87 mm.
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Figure 46: Fluctuating-velocity spectra, Re. = 2.4 X 10°, [18|12] roughness, z/c = 0.41,
z =90mm.
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Figure 47: Fluctuating-velocity spectra, Re. = 2.4 X 10%, [18]12] roughness, z/c = 0.41,
z =93 mm. ‘ :
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Figure 48: Mean-flow velocity profiles, Re, = 2.4 x 10°, [18|12] roughness, z/c = 0.42,

2z = 82-93 mm.
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Figure 49: Mean-flow velocity contours, Re. = 2.4 x 108, [18]12] roughness, z/c = 0.42,
contour lines at U/Uegee = 0.10, 0.20, ..., 0.90.
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Figure 50: Fluctuating-velocity spectra, Re, = 2.4 x 1067, [18]12] roughness, z/c = 0.42,
z = 84 mm.
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Figure 51: Fluctuating-velocity spectra, Re. = 2.4 X 10%, [18|12] roughness, z/c = 0.42,
= 87 mm.
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Figure 52: Fluctuating-velocity spectra, Re. = 2.4 x 108, [1812] roughness, x/c = 0.42,
2z =90 mm.
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Figure 53: 1.8-kHz velocity-fluctuation rms distribution, Re. = 2.4 x 10, [18]12] roughness,
z/c = 0.42, 1.7-1.9-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 54: 3.0-kHz velocity-fluctuation rms distribution, Re. = 2.4 X 106, [18|12] roughness,
z/c = 0.42, 2.9-3.1-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 55: Mean-flow velocity profiles, Re. = 2.4 x 10°, [18|12] roughness, z/c = 0.43,

z = 79-90 mm.
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Figure 56: Mean-flow velocity contours, Re. = 2.4 x 108, [18]12] roughness, z/c = 0.43,
contour lines at U/Ugqge = 0.10, 0.20, ..., 0.90.
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Figure 57: Fluctuating-velocity spectra, Re. = 2.4 x 10%, [18|12] roughness, z/c = 0.43,
z = 81l mm. :
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Figure 58: Fluctuating-velocity spectra, Re. = 2.4 x 108, [18]12] roughness, z/c = 0.43,
z = 84 mm.
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Figure 59: Fluctuating-velocity spectra, Re. = 2.4 x 108, [18|12] roughness, z/c = 0.43,
z = 87mm. \
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Figure 60: Mean-flow velocity profiles, Re, = 2.4 x 10°, [18|12] roughness, z/c = 0.44,

2z = 76-87 mm.
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Figure 61: Mean-flow velocity contours, Re. = 2.4 x 10%, [18|12] roughness, z/c = 0.44,

78 80 82
z[mm]

contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.

99

84 86 88




<< <<
i

100 b

Power [1/Hz]

107"

1018
10 100 1000 10000

Freq. [Hz]

Figure 62: Fluctuating-velocity spectra, Re, = 2.4 X 108, [18]12] roughness, z/c = 0.44,
z = 78 mm.
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Figure 63: Fluctuating-velocity spectra, Re; = 2.4 X 108, [18]12] roughness, z/c = 0.44,
z = 8l mm.
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Figure 64: Fluctuating-velocity spectra, Re, = 2.4 x 10%, [18]12] roughness, z/c = 0.44,
z = 84 mm.
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Figure 65: 3.0-kHz velocity-fluctuation rms distribution, Re. = 2.4 x 108, [18|12] roughness,
z/c = 0.44, 2.9-3.1-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 66: 6.1-kHz velocity-fluctuation rms distribution, Re. = 2.4 x 108, [18|12] roughness,
x/c = 0.44, 6.0-6.2-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 67: Mean-flow velocity profiles, Re. = 2.4 X 108, [18]12] roughness, z/c = 0.45,
z = 75-86 mm.
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Figure 68: Mean-flow velocity contours, Re. = 2.4 x 10°, [18|12] roughness, z/c = 0.45,
contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 69: Fluctuating-velocity spectra, Re. = 2.4 x 105, [18]12] roughness, z/c = 0.45,
2z =76 mm.
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Figure 70: Fluctuating-velocity spectra, Re, = 2.4 x 108, [18]12] roughness, z/c = 0.45,
z =79 mm.
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Figure 71: Fluctuating-velocity spectra, Re, = 2.4 x 10°, [18]12] roughness, z/c = 0.45,
z = 82mm.
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Figure 72: 6.1-kHz velocity-fluctuation rms distribution, Re, = 2.4 x 108, [18]|12] roughness,
z/c = 0.45, 6.0-6.2-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 73: Mean-flow velocity profiles, Re, = 2.4 x 106, [18]12] roughness, z/c = 0.46,

z = 71-82 mm.
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Figure 74: Mean-flow velocity contours, Re, = 2.4 x 10°, [18]12] roughness, z/c = 0.46,

contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 75: Fluctuating-velocity spectra, Re, = 2.4 x 106, [18|12] roughnesé, z/c = 0.46,
z = T72mm.

106




<< <=
oo

i

} :
1, i Sy
,j‘%‘:v

5

=148

e
Falint
i Yf\kgr'

N
L
= -9
5 10
=
o)
a
10-11
10-13 L
10 100

1000 10000

Freq. [Hz]

Figure 76: Fluctuating-velocity spectra, Re. = 2.4 x 10%, [18|12] roughness, z/c = 0.46,
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Figure 77: Fluctuating-velocity spectra, Re,
z = 78 mm.
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2.4 x 108, [18|12] roughness, z/c = 0.46,
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Figure 78: Total velocity-fluctuation rms distribution, Re, = 2.4 x 108, [18]12] roughness,
x/c = 0.46, 20 Hz-8.0-kHz bandpass. Lines are 10% contours of the maximum rms fluctu-

ations.
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Figure 79: Mean-flow velocity profiles, Re. = 2.4 x 108, [18|12] roughness, z/c = 0.47, z =
68-79 mm.
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Figure 80: Mean-flow velocity contours, Re. = 2.4 x 10°, [18]12] roughness, z/c = 0.47,
contour lines at U/Uggge = 0.10, 0.20, ..., 0.90.
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Figure 81: Mean-flow velocity profiles, Re, = 2.4 x 10%, [18]12] roughness, z/c = 0.48,

z = 64-75 mm.
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Figure 82: Mean-flow velocity contours, Re. = 2.4 x 105, [18]12] roughness, z/c = 0.48,
contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 83: Fluctuating-velocity spectra, Re, = 2.4 x 108, [18]12] roughness, z/c = 0.48,
z = 65mm.

110




Power [1/Hz]

1 0'1 3 1 1
10 100 1000 10000

Freq. [Hz]

Figure 84: Fluctuating-velocity spectra, Re. = 2.4 x 10°, [18|12] roughness, z/c = 0.48,
z = 68 mm. ’
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Figure 85: Fluctuating-velocity spectra, Re. = 2.4 x 10%, [18|12] roughness, z/c = 0.48,
z = Tl mm.
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Figure 86: Fluctuating-velocity spectra, Re, = 2.4 X 10%, [18|12] roughness, z/c = 0.48,
z = 74mm.
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Figure 87: Velocity-fluctuation rms growth, Re, = 2.4 x 108, [18]12] roughness.
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Figure 88: Mean-flow velocity contours, Re. = 2.4 x 108, [54]12] roughness, z/c = 0.25,
contour lines at U/Uegqge = 0.10, 0.20, ..., 0.90.
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Figure 89: Fluctuating-velocity spectra, Re. = 2.4 x 108, [54/12] roughness, z/c = 0.25,
z =118.6 mm.
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Figure 90: Fluctuating-velocity spectra, Re. = 2.4 x 108, [54|12] roughness, z/c = 0.25,
z = 122.2mm.

108

< <<=
i

Power [1/Hz]

10

10718 T
10 100 ' 1000 10000

- Freq. [Hz]

Figure 91: Fluctuating-velocity spectra, Re, = 2.4 x 10%, [54|12] roughness, z/c = 0.25,
z = 125.8 mm.
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Figure 92: Mean-flow velocity contours, Re. = 2.4 x 108, [54|12] roughness, z/c = 0.30,
contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 93: Fluctuating-velocity spectra, Re. = 2.4 x 10%, [54]12] roughness, z/c = 0.30,
z = 107 mm. ‘ '
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Figure 94: Fluctuating-velocity spectra, Re, = 2.4 x 108, [54]12] roughness, z/c = 0.30,
z =110mm.
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Figure 95: Fluctuating-velocity spectra, Re, = 2.4 x 10%, [54|12] roughness, z/c = 0.30,
z =113 mm.
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Figure 96: 200-Hz velocity-fluctuation rms distribution, Re. = 2.4 x 108, [54|12] roughness,
- z/c = 0.30, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 97:. Mean-flow velocity contours, Re, = 2.4 x 10%, [54|12] roughness, z/c = 0.34,
contour lines at U/Ugqge = 0.10, 0.20, ..., 0.90.
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Figure 98: Fluctuating-velocity spectra, Re, = 2.4 X 108, [54/12] roughness, z/c = 0.34,
= 101 mm.
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Figure 99: Fluctuating-velocity spectra, Re, = 2.4 x 10°, [54|12] roughness, z/c = 0.34,
z = 104 mm. .
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Figure 100: Fluctuating-velocity spectra, Re, = 2.4 x 108, [54/12] roughness, z/c = 0.34,
2z =107 mm. :
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Figure 101: 200-Hz velocity-fluctuation rms distribution, Re. = 2.4 x 108, [54|12] roughness,
z/c = 0.34, 100~300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 102: 3.0-kHz velocity-fluctuation rms distribution, Re. = 2.4x 106, [54|12] roughness,
x/c = 0.34, 2.9-3.1-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 103: Mean-flow velocity contours, Re. = 2.4 x 108, [54|12] roughness, z/c = 0.38,
contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 104: Fluctuating-velocity spectra, Re, = 2.4 x 10°, [54/12] roughness, z/c = 0.38,
z = 88 mm.
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Figure 105: Fluctuating-velocity spectra, Re. = 2.4 x 10, [54/12] roughness, z/c = 0.38,
z =91 mm.
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Figure 106: Fluctuating-velocity spectra, Re, = 2.4 X 108, [54|12] roughness, x/c = 0.38,
= 94 mm.
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Figure 107: 200-Hz velocity-fluctuation rms distribution, Re; = 2.4 x 108, [54]12] roughness,
x/c = 0.38, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 108: 3.0-kHz velocity-fluctuation rms distribution, Re, = 2.4x 10%, [54]12] roughness,
z/c = 0.38, 2.9-3.1-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 109: 6.1-kHz velocity-fluctuation rms distribution, Re, = 2.4x 10°, [54]12] roughness,
z/c =0.38, 6.0-6.2-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 110: Mean-flow velocity contours, Re. = 2.4 X 108, [54|12] roughness, z/c = 0.39,

contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 111: Fluctuating-velocity spectra, Re. = 2.4 X 108, [54|12] roughness, z/c = 0.39,
z = 86 mm.
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Fluctuating-velocity spectra, Re. = 2.4 x 10%, [54|12] roughness, z/c = 0.39,
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Figure 114: 200-Hz velocity-fluctuation rms distribution, Re; = 2.4 x 108, [54|12] roughness,
z/c = 0.39, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 115: 3.0-kHz velocity-fluctuation rms distribution, Re, = 2.4x 108, [54/12] roughness, -
z/c = 0.39, 2.9-3.1-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 116: 6.1-kHz velocity-fluctuation rms distribution, Re. = 2.4x 108, [54]12] roughness,
z/c = 0.39, 6.0-6.2-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 117: Mean-flow velocity contours, Re, = 2.4 x 108, [54]12] roughness, z/c = 0.40,
contour lines at U/Uggge = 0.10, 0.20, ..., 0.90.
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Figure 118: Fluctuating-velocity spectra, Re, = 2.4 x 108, [54|12] roughness, z/c = 0.40,

z=82mm. .
-5
10 Y=3.00mm ——
Y =2.00 mm -
Y =1.00 mm oo
107 b7
N
z
— 9 L
5 10 .
; \ o
Qo_ “,‘wy,u‘ b rf':
vy ."fa‘l‘,ﬁ,ll o
i.‘h’
10"
107"

10 } 100 1000 10000
z = 85 mm. :

|

Freq. [Hz]
F . Figure 119: Fluctuating-velocity spectra, Re, = 2.4 X 10%, [54/12] roughness, z/c = 0.40,
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Figure 120: Fluctuating-velocity spectra, Re. = 2.4 x 10%, [54|12] roughness, z/c = 0.40,
z = 88 mm.
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Figure 121: Total velocity-fluctuation rms distribution, Re, = 2.4 x 108, [54]12] rough-

ness, z/c = 0.40, 20 Hz-8.0-kHz bandpass. Lines are 10% contours of the maximum rms
fluctuations.
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Figure 122: Velocity-fluctuation rms growth, Re. = 2.4 x 108, [54]12] roughness.
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Figure 123: Mean-flow velocity contours, Re, = 2.0 x 108, [54|12] roughness, z/c = 0.40,

contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.
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Figure 124: Fluctuating-velocity spectra, Re, = 2.0 x 10, [54|12] roughness, z/c = 0.40,
z =136.4mm.
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Figure 125: Fluctuating-velocity spectra, Re. = 2.0 x 10%, [54|12] roughness, z/c = 0.40,
z = 138.8 mm.
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Figure 126: Fluctuating-velocity spectra, Re. = 2.0 x 10%, [54/12] roughness, z/c = 0.40,
z = 141.2 mm.
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Figure 127: 200-Hz velocity-fluctuation rms distribution, Re, = 2.0 x 108, [54/12] rbughness,
z/c = 0.40, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 128: Mean-flow velocity contours, Re. = 2.0 x 108, [54|12] roughness, z/c = 0.46,

contour lines at U/Ueqge = 0.10, 0.20, ..., 0.90.
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Figure 129: Fluctuating-velocity spectra, Re. = 2.0 x 108, [54]|12] roughness, z/c = 0.46,
z =116.4mm.
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Figure 130: Fluctuating-velocity spectra, Re, = 2.0 x 108, [54/12] roughness, z/c = 0.46,

z = 118.8 mm.
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Figure 131: Fluctuating-velocity spectra, Re, = 2.0 x 105, [54]12] roughness, z/c = 0.46,

z=121.2mm.
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Figure 132: 200-Hz velocity-fluctuation rms distribution, Re, = 2.0 x 10, [54/12] roughness,
z/c = 0.46, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 133: 2.4-kHz velocity-fluctuation rms distribution, Re, = 2.0x 108, [54|12] roughness,
z/c = 0.46, 2.3-2.5-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 134: Mean-flow velocity contours, Re. = 2.0 x 10°, [54]12] roughness, z/c = 0.50,
contour lines at U/Uegge = 0.10, 0.20, ..., 0.90.

-5
N Y =3.00 mm ———
Y =2.00 mm --------
Y =1.00mm -
107 -7
w
x
= -9
5 10
2
' E
|
10"
1018
10 100 © 1000 10000
Freq. [Hz]

Figure 135: Fluctuating-velocity spectra, Re, = 2.0 x 10%, [54]12] roughness, z/c = 0.50,
z = 103.8mm.

136




107

107

Power [1/Hz]
=)
[V}

10"

10713 ; : -
10 100 1000 10000

Freq. [Hz]

Figure 136: Fluctuating-velocity spectra, Re, = 2.0 x 108, [54]|12] roughness, z/c = 0.50,
z = 106.2 mm.
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Figure 137: Fluctuating-velocity spectra, Re. = 2.0 x 108, [54|12] roughness, z/c = 0.50,
z = 108.6 mm.
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Figure 138: 200-Hz velocity-fluctuation rms distribution, Re. = 2.0x 108, [54/12] roughness,
z/c = 0.50, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 139: 2.4-kHz velocity-fluctuation rms distribution, Re. = 2.0x 108, [54/12] roughness,
z/c = 0.50, 2.3-2.5-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 140: 4.9-kHz velocity;ﬂuctuation rms distribution, Re, = 2.0x 10, [54/12] roughness,
z/c = 0.50, 4.8-5.0-kHz bandpass. Lines are 10% contours of the maximum in this band.

Y [mm]

O84 86 88 90 92 94 96

z [mm]

Figure 141: Mean-flow velocity contours, Re. = 2.0 x.108, [54]|12] roughness, z/c = 0.55,
contour lines at U/Ueggge = 0.10, 0.20, ..., 0.90.
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Figure 142: Fluctuating-velocity spectra, Re, = 2.0 X 108, [54]12] roughness, z/c = 0.55,
z = 85.6 mm.
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Figure 143: Fluctuating-velocity spectra, Re. = 2.0 X 108, [54/12] roughness, z/c = 0.55,
z = 88.0 mm. :
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Figure 144: Fluctuating-velocity spectra, Re, = 2.0 x 108, [54/12] roughness, z/c = 0.55,
z = 90.4 mm.
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Figure 145: 200-Hz velocity-fluctuation rms distribution, Re. = 2.0 x 10°, [54|12] roughness,
z/c = 0.55, 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band.

141

- 5 e canmtn, — < -

LDt hesmemdn, et

el Sl e



Y [mm]

94

{ L 1 L |
88 90 92
z [mm]

Figure 146: 2.4-kHz velocity-fluctuation rms distribution, Re. = 2.0x10°, [54/12] roughness,
z/c = 0.55, 2.3-2.5-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 147: 4.9-kHz Velocify—ﬂuctuation rms distribution, Re, = 2.0x 108, [54|12] roughness,
z/c = 0.55, 4.8-5.0-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 148: 7.5-kHz velocity-fluctuation rms distribution, Re. = 2.0x 108, {54]12] roughness,
z/c = 0.55, 7.4-7.6-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 149: Mean-flow velocity contours, Re. = 2.0 x 10°, [54|12] roughness, z/c = 0.57,
contour lines at U/Uggge = 0.10, 0.20, ..., 0.90.
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Figure 150: Fluctuating-velocity spectra, Re. = 2.0 x 10°, [54|12] roughness, z/c = 0.57,
z = T77.8mm.
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Figure 151: Fluctuating-velocity spectra, Re, = 2.0 x 108, [54]12] roughness, z/c = 0.57,
z = 80.2mm.
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Figure 152: Fluctuating-velocity spectra, Re. = 2.0 x 10%, [54|12] roughness, z/c = 0.57,
z = 82.6 mm.
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Figure 153: Total velocity-fluctuation rms distribution, Re. = 2.0 x 10°, [54]12] rough-

ness, z/c = 0.57, 20-Hz-12.0-kHz bandpass. Lines are 10% contours of the maximum rms
fluctuations.
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Figure 154: Velocity-fluctuation rms growth, Re, = 2.0 X 108, [54]12] roughness.
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Figure 155: Mean-flow velocity contours, Re, = 2.8 x 10°, [54|12] roughness, z/c = 0.30,
contour lines at U/Ueqgge = 0.10, 0.20, ..., 0.90.
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Figure 156: Fluctuating-velocity spectra, Re. = 2.8 x 105, [54|12] roughness, z/c = 0.30,
z = 80.2 mm.
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Figure 157: Fluctuating-velocity spectra, Re. = 2.8 x 108, [54]12] roughness, z/c = 0.30,
z = 82.6 mm.
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Figure 158: Fluctuating-velocity spectra, Re. = 2.8 x 10%, [54|12] roughness, z/c = 0.30,
z = 85.0 mm.
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Figure 159: Fluctuating-velocity spectra, Re. = 2.8 x 108, [54]12] roughness, z/c = 0.30,
z =87.4mm.
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Figure 160: 300-Hz velocity-fluctuation rms distribution, Re. = 2.8 x 10°, (54]12] roughness,
z/ec = 0.30, 200-400-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 161: 3.6-kHz velocity-fluctuation rms distribution, Re. = 2.8x 10, [54|12] roughness,
z/c = 0.30, 3.5-3.7-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 162: Mean-flow velocity contours, Re, = 2.8 x 105, [54/12] roughness, z/c = 0.35,
contour lines at U/Uegqge = 0.10, 0.20, ..., 0.90.

10°®

<=<=<=
nuany

107 F

10° |

Power [1/Hz]

10"

1018

100 1000 10000
Freq. [Hz]

Figure 163: Fluctuating-velocity spectra, Re, = 2.8 x 10%, [54/12] roughness, z/c = 0.35,
z = 66 mm.
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Figure 164: Fluctuating-velocity spectra, Re. = 2.8 x 108, [54]12] roughness, z/¢ = 0.35,
z = 68 mm.
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Figure 165: Fluctuating-velocity spectra, Re. = 2.8 x 10°, [54|12] roughness, z/c = 0.35,
z = 70mm.
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Figure 166: Fluctuating-velocity spectra, Re, = 2.8 x 10%, [54|12] roughness, z/c = 0.35,
z = T2mm.
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Figure 167: 300-Hz velocity-fluctuation rms distribution, Re, = 2.8 x 10°, [54]12] roughness,
z/c = 0.35, 200-400-Hz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 168: 3.6-kHz velocity-fluctuation rms distribution, Re. = 2.8 x 108, [54]12] roughness,
z/c = 0.35, 3.5-3.7-kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 169: 6.5-kHz velocity-fluctuation rms distribution, Re. = 2.8x10%, [54/12] roughness,
z/c =0.35, 6.4-6.6 kHz bandpass. Lines are 10% contours of the maximum in this band.
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Figure 170: Mean-flow velocity contours, Re. = 2.8 x 10°, [54|12] roughness, x/c = 0.37,
contour lines at U/Uegge = 0.10, 0.20, , 0.90.
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Figure 171: Fluctuatmg—velomty spectra Re. = 2.8 x 10%, [54|12] roughness, z/c = 0.37,
z = 6lmm.
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Figure 172: Fluctuating-velocity spectra, Re. = 2.8 x 108, [54|12] roughness, z/c = 0.37,
z = 63 mm.
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Figure 173: Fluctuating-velocity spectra, Re. = 2.8 x 106, [54|12] roughness, z/c = 0.37,
z = 65 mm.
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Figure 174: Fluctuating-velocity spectra, Re. = 2.8 x 108, [54]12] roughness, z/c = 0.37,
z = 67mm.
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Figure 175: 3.6-kHz velocity-fluctuation rms distribution, Réc = 2.8x10%, [54]12] roughness,

x/c = 0.37, 3.5 kHz-3.7-kHz bandpass. Lines are 10% contours of the maximum in this
band.
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Figure 176: 6.5-kHz velocity-fluctuation rms distribution, Re, = 2.8x 108, [54/12] roughness,
z/c = 0.37, 6.4kHz—6.6-kHz bandpass. Lines are 10% contours of the maximum in this

band.
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Figure 177: Mean-flow velocity contours, Re. = 2.8 x 108, [54|12] roughness, z/c = 0.38,
contour lines at U/Ueqge = 0.10, 0.20, ..., 0.90.
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Figure 178: Fluctuating-velocity spectra, Re. = 2.8 x 10°, [54|12] roughness, z/c = 0.385,

z = 58 mm.
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Figure 179: Fluctuating-velocity spectra, Re, = 2.8 x 10°, [54]12] roughness, z/c = 0.385,

z = 60 mm.
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Figure 180: Fluctuating-velocity spectra, Re, = 2.8 x 10°, [54|12] roughness, z/c = 0.385,
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Figure 181: Fluctuating-velocity spectra, Re. = 2.8 x 105, [54]12] roughness, z/c = 0.385,

z = 64 mm.
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Figure 182: Total velocity-fluctuation rms distribution, Re, = 2.8 x 105, [54|12] roughness,

z/c = 0.385, 20-Hz-12.0-kHz bandpass. Lines are 10% contours of the maximum rms

fluctuations.
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Figure 183: Velocity-fluctuation rms growth, Re. = 2.8 x 108, [54]12] roughness.
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Figure 184: Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced
0.8

artificial roughness, Re. = 2.4 x 10%, z/c = 0.40, Y = 1.5 mm.
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Figure 185: Power spectral density of the spanwise mean-flow hotwire scan with and without

2.4 x10%, z/c=0.40, Y = 1.5mm.

activated 12-mm-spaced artificial roughness, Re.
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Figure 186: Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced
artificial roughness, Re. = 2.4 x 105, /¢ =0.43, Y = 2.0 mm.
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Figure 187: Power spectral density of the spanwise mean-flow hotwire scan with and without
activated 12-mm-spaced artificial roughness, Re, = 2.4 x 108, z/c = 0.43, Y = 2.0 mm.
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Figure 188: Spanwise distribution of velocity-fluctuation power spectral density at 3.0kHz
with and without activated 12-mm-spaced artificial roughness, Re. = 2.4 x 108, z/c = 0.43,
Y =2.0mm.
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Figure 189: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.4 x 10, z/c = 0.43, Y = 2.0mm, z = 24 mm.
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Figure 190: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.4 x 108, /¢ =0.43, Y = 2.0 mm, z = 31 mm.
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Figure 191: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.4 X 108, z/c=0.43, Y = 2.0 mm, z = 46 mm.
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Figure 192: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.4 x 108, z/c = 0.43, Y = 2.0 mm, z = 66 mm.
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Figure 193: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re. = 2.4 x 10%, z/c = 0.43, Y = 2.0mm, z = 108 mm.
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Figure 194: Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced
artificial roughness, Re. = 2.4 x 108, z/c = 0.45, Y = 2.0 mm.
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Figure 195: Power spectral density of the spanwise mean-flow hotwire scan with and without
activated 12-mm-spaced artificial roughness, Re. = 2.4 X 108, z/c = 0.45, Y = 2.0 mm.
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Figure 196: Spanwise distribution of velocity-fluctuation power spectral density at 3.0kHz
with and without activated 12-mm-spaced artificial roughness, Re, = 2.4 x 108, z/c = 0.45,
Y =2.0mm.
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Figure 197: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.4 x 108, z/c = 0.45, Y = 2.0mm, z = 60 mm.
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Figure 198: Fluctuating-velocity spectral density with and without activated 12-mm-spaced

artificial roughness, Re. = 2.4 x 10%, z/c =0.45,Y = 2.0 mm, z = 60 mm.
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Figure 199: Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced

artificial roughness, Re. = 2.8 x 108, z/c = 0.38, ¥ = 1.2 mm.
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Figure 200: Power spectral density of the spanwise mean-flow hotwire scan with and without
activated 12-mm-spaced artificial roughness, Re, = 2.8 x 108, z/c = 0.38, Y = 1.2 mm.
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Figure 201: Spanwise distribution of velocity-fluctuation power spectral density at 4.0kHz
with and without activated 12-mm-spaced artificial roughness, Re. = 2.8 x 108, /¢ = 0.38,
Y =1.2mm.
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Figure 202: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re. = 2.8 X 108, z/c=0.38,Y =1.2mm, z = 23 mm.
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Figure 203: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.8 x 10%, /¢ =0.38, ¥ = 1.2 mm, z = 26 mm.
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Figure 204: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re. = 2.8 x 10%, z/c =0.38, Y = 1.2 mm, z = 84 mm.
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Figure 205: Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced
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artificial roughness, Re. = 2.8 x 106, z/c = 0.40, Y = 1.2 mm.
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Figure 206: Power spectral density of the spanwise mean-flow hotwire scan with and without
activated 12-mm-spaced artificial roughness, Re; = 2.8 X 108, x/c=0.40, Y = 1.2 mm.
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Figure 207: Spanwise distribution of velocity-fluctuation power spectral density at 4.0kHz
with and without activated 12-mm-spaced artificial roughness, Re, = 2.8 x 108, z/c = 0.40,

Y =12mm.
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Figure 209: Power spectral density of the spanwise mean-flow hotwire scan with and without

activated 12-mm-spaced artificial roughness, Re, = 2.0 x 10%, z/c = 0.58, ¥ = 2.0 mm.
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Figure 210: Spanwise distribution of velocity-fluctuation power spectral density at 2.0kHz

with and without activated 12-mm-spaced artificial roughness, Re, = 2.0 x 108, z/c = 0.58,
Y =2.0mm.
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Figure 211: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.0 x 10%, z/c = 0.58, Y = 2.0 mm, z = 16 mm.
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Figure 212: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re, = 2.0 x 108, /¢ = 0.58, Y = 2.0 mm, 2z = 53 mm.
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- Figure 213: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
artificial roughness, Re. = 2.0 x 106, z/c = 0.58, Y = 2.0mm, z = 103 mm.
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Figure 214: Fluctuating-velocity spectral density with and without activated 12-mm-spaced
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Figure 215: Spahwise distribution of velocity-fluctuation power spectral density at 3.0kHz
with and without activated 12-mm-spaced artificial roughness, Re. = 2.0 x 108, z/c = 0.58,

Y =2.0mm.
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Figure 216: Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced
artificial roughness, Re. = 2.0 x 108, z/c = 0.60, Y = 2.0 mm.
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Figure 217: Power spectral density of the spanwise mean-flow hotwire scan with and without
activated 12-mm-spaced artificial roughness, Re, = 2.0 x 10%, z/c = 0.60, Y = 2.0 mm.
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Figure 218: Spanwise distribution of velocity—ﬂuctuatioh power spectral density at 2.0kHz
with and without activated 12-mm-spaced artificial roughness, Re. = 2.0 x 108, z/c = 0.60,

Y =2.0mm.
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Figure 219: Spanwise distribution of velocity-fluctuation power spectral density at 3.0kHz

with and without activated 12-mm-spaced artificial roughness, Re. = 2.0 x 10, z/c = 0.60,
Y =2.0mm. '
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